

A SOA and DBUS-based Robotic Component Interaction

R. P. Srivastava
1
, L. S. Umrao

2*
, R. S. Yadav

3

1Department of CSIT, Guru Ghasidas Vishwavidyala, Bilaspur (C.G.), India

2Department of Computer Science & Engineering, Faculty of Engineering and Technology, Dr.

Rammanohar Lohia Avadh University, Ayodhya (U.P.), India

3Department of Business Management & Entrepreneurship, Dr. Rammanohar Lohia Avadh

University, Ayodhya, UP, India

Received 13 January 2022, accepted in final revised form 8 September 2022

Abstract

Rewriting and executing codes violate the SOLID principle of object-oriented

programming. Robotics being an emerging platform, it becomes hard to write the code from

scratch. We focus on using what is already built in as a Robotics Component instead of

writing something from scratch. The intention is to minimize development effort and

produce the desired result on time without rewriting the software components. By allowing

functionalities of different components to be brought into a single component, we are saving

the time required for code conversion or replication of functionality written in one language

to another. So an architecture with these properties seems ideal for integrating different

components. Integration is one of the most fundamental problems in designing autonomous

mobile robots, especially those interacting with people in real-life settings. This paper

presents an approach to building complex systems from different robotics packages

available as open source components (PLAYER, STAGE, GAZEBO, CARMEN). DBUS is

a message-oriented protocol for communicating among processes running on the same

desktop. SOA provides access to the services over the network and adds novelty to our

application.

Keywords: CBARPI; MARIE; ROBOTICS; PLAYER; CARMEN; GAZEBO; Service-

oriented architecture; CCU; DCU; BCU; Interface.

© 2023 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

doi: http://dx.doi.org/10.3329/jsr.v15i1.57545 J. Sci. Res. 15 (1), 11-29 (2023)

1. Introduction

Robotics [1] is still a new field, and till now, there is no standard proposed. Lacking a

defined standard has created a scenario where different communities use different robot

programming software. This has restricted knowledge propagation. Either you need to

know their standard, or you have to convert the same into yours. Moreover, this has also

created a limited functionality situation, i.e., we are limited to the functionality provided

by the component that a particular community uses. The main idea of this project is to

*
 Corresponding author: lokendra.manit@gmail.com

Available Online

J. Sci. Res. 15 (1), 11-29 (2023)

JOURNAL OF

SCIENTIFIC RESEARCH

www.banglajol.info/index.php/JSR

Publications

http://dx.doi.org/10.3329/jsr.v15i1.57545
mailto:mahbubchem@cu.ac.bd

12 A SOA and DBUS based Robotic Component Interaction

develop an architecture that provides different functionalities provided by different

components [2].

 By presenting such architecture to the robotics community, we can equip developers

with functionalities of different components. Robotics which is still a new field, lacks

standards. Thus no standard component is available for robot programming. Since

Robotics is in the early exploration phase, identifying common requirements is still

challenging. So, many communities worldwide are developing different programming

environments for controlling and programming robots. Most of these components are

incompatible, so the developer has to choose between available components. This

incompatibility may be because of different communication protocols, robotics platforms,

architectural design, programming language, proprietary source code, etc. But such non-

standard developments have made developers restricted to one component. This makes

them code functionalities already present in other components. This has restricted

knowledge propagation and consumes more time in developing controlling code for

robots. Moreover, to use the function of another component first, the developer needs to

understand and study that component and then deploy the already programmed function in

that component to the component which the developer is using for the programming of the

robot. Table 1 summarizes the issues addressed to find the research gaps, which are then

solved using DBUS and SOA.

Table 1. Summary shows need of DBUS & SOA.

Author Approach and Process Existing Problem

Zwicky [3] Focuses on designing Java based

actor framework

These framework designated on Java do not

support promise based construction and also

do not provide separation of concerns for

coordination. These frameworks were

designed before Java 8 was released, hence

they do not support functional programming

construct necessary for immutability. Hence

these frameworks are error prone to race

conditions.

Karmani et

al. [4]

In order to deal with the

concurrency issue, emphasis has

been given to design isolated

computations.

All the sequential programming languages

(Java, C++ etc.) are not considered fit to

implement Shared Memory concurrent

communications, because they share values

which results in race condition.

Karmani et

al. [4]

Actor based functional languages

(Scala, Salsa etc.) addresses the

concurrency constructs such as

immutability and pure functions.

These actors based functional frameworks

use continuation mechanism to implement

synchronization which suffers with inversion

of control issues.

Elkady et al.

[5]

Represents the survey of different

existing components models such

as MARIE, OROCOS, ROS etc.

They have been designed using high level

language and they do not support

concurrency by default.

Thus by combining different components we can equip developers with different

components functionalities. Such environment helps quick deployment of robot

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 13

controlling code. The thread based integration approach is also tested in [6] which

produce certain bottlenecks due to serialization. The integration approach of various

components is also tested for deadlock analysis using [7] which is caused due to multi

thread based implementation. Therefore it has been decided to use DBUS as suggested in

and SOA which is widely accepted framework of communication and service exchange

[8,9]. The robotic component models ROS, CORBA, Player/Stage, MARIE, OpenCom,

and OROCOS are domain-specific reusable collections and must execute on the

underlying ROS platform. The use of ROS discussed in [21,22] provides an

implementation of platform-specific implementation and does not provide services on

demand. CORBA component model uses its built-in CORBA processes for component

inter-process communication. OpenCom component model is designed for embedded

system environments that use resources through a kernel API, and the component model

mediates a call to this API. MARIE uses the ACE framework for component

communication and Player/Stage as a network server to access sensor data. MARIE takes

advantage of distributed support of execution by accepting and offering sensor data from

Player/Stage.

 This paper is organized as follows: section 2 introduces the details of CBARPI

[Component Based Architecture for Robotics package integration], section 3 introduces

the detailed study of MARIE, section 4 introduces the proposed architecture for PLAYER

and CARMEN interaction, and section 5 discusses the implementation methodologies

section 6 introduces implementation details, and section VII introduces the developed

model of robots interaction and finally conclusion and future work.

2. CBARPI

CBARPI [Component Based Architecture for Robotics package interaction] is an

approach toward developing such an architecture that can use for integrating different

robotics components together. This approach demands architecture to be flexible enough

so that it can handle:

 Rapid interaction of Robotics Components: Components can easily be connected

to each other through architecture. If connecting components requires too much expertise,

that would be useless again as it would make the architecture obsolete after some time as

it would not be able to integrate future components.

 Support Different Communication Protocols: This allows architecture to connect

components from different domains. Components using different communication

protocols can be integrated using architecture.

 Support Different Programming languages: Components written in different

programming languages can be connected, so the language barrier is removed. As we

know, every programming language has its advantages and disadvantages. Thus such

architecture enables developers to exploit good aspects of different programming

languages.

14 A SOA and DBUS based Robotic Component Interaction

 Simple and well-designed: Simple and well-defined architecture helps in a better

understanding of the architecture. Such architecture can be easily modified and worked on

by different developers. To view more conveniently, architecture can be broken into

different layers. Well-defined layers help developers to contribute to a particular layer

without caring much about other layers. So, architecture should be such that there is

minimum coupling between layers defined in architecture. Thus, understanding

architecture is limited to layers, and moreover, developers can contribute to a particular

layer without caring or understanding the whole architecture. Such an approach develops

an expertise approach by equipping developers to contribute to their well-defined area. So,

one of the most important steps toward building the architecture is identifying different

functional layers that allow a high-level view of the architecture.

 CBARPI utilizes all the features mentioned above by presenting simple and well-

defined architecture. These features make architecture more usable by presenting it in an

easily modifiable way. CBARPI is motivated by MARIE [5].

3. MARIE

MARIE [Mobile and autonomous robotics integration environment] is an architecture

already available for integrating different robotics packages but has become obsolete now.

But the study of MARIE architecture helps a lot in finding out various aspects of

CBARPI's architecture. It has a mediation layer architecture in which a central manager

manages all integration and communication work. This centralized control unit also

termed a mediator, interacts with each class independently. Further helps coordinate and

synchronize global interaction between classes to realize the desired system. BY allowing

such architecture, integration of components having different communication protocols

and mechanisms are possible as long as the mediator supports it.

Fig. 1. Mediation pattern MARIE.

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 15

Four types of components are used in the MIL they are Application Adapter,

Communication Adapter, Application Manager, and Communication Manager:

 Application Adapter (AA): component interfacing useful applications within the MIL

and enabling them to interact with each other through their standardized interface (i.e.,

Ports) and using MARIE's shared data types. Interconnections using Port communication

abstraction are illustrated in Fig. 3 with a small dot between communication links

represented by arrows.

 Communication Adapter (CA): a component that ensures communication protocols or

by implementing traditional routing communication functions. Available Communication

Adapters in MARIE are Splitters, and Switches, between other components by adapting

incompatible communication mechanisms and Mailboxes and Shared Maps. A Splitter

sends data from one source to multiple destinations without the sender being aware of the

receivers. A Switch acts like a multiplexer sending data to the selected output. A Mailbox

creates a buffering interface between asynchronous components. A Shared Map is used to

share data between multiple components in the key-value form.

 Application Manager (AM): System-level component managing on local or remote

processing nodes, Application Adapters, and Communication Adapters. Application and

Communication Adapters initialization, configuration, start, stop, suspend and resume are

handled by the Application Manager. When starting the system, the Application Manager

initializes the components following the adequate sequence.

 Communication Manager (CM): System-level component dynamically managing, on

local or remote processing nodes, the communications mechanisms (socket, port, shared

memory, etc.).

3. Communication Protocol Abstraction

The development of robotic applications using MARIE is based on reusable software

blocks, referred to as components, which implement functionalities by encapsulating

existing applications, programming environments, or dedicated algorithms. Components

are configured and interconnected to implement the desired system, using the software

applications and tools available through MARIE.

 But this architecture has become obsolete now. It supports only old versions of

packages and is not compatible with today's versions of compilers and hardware. Some of

the drawbacks of MARIE Architecture:

 Doesn't compile with today's version of compilers.

 Marie supports an old version of Robotics packages

 It is a must to have a closer understanding of Marie's architecture for designing

adapters.

4. Proposed Architecture

Contexts: While designing new software components, reusability, interoperability,

extensibility, adaptability & modularity are important software attributes that should be

16 A SOA and DBUS based Robotic Component Interaction

considered as a requirement. To produce useful components in Robotics & to progress in

the field of Robotics activities, It is a must to take benefit of the components developed

earlier by different organizations for different purposes.

 Problem and contribution: Such attributes can be obtained while designing

components by using the standard framework for data representation & interfaces. Since

the Robotics activities and standard is developed and adopted by different communities,

they provide a different context, i.e., using different operating systems, programming

languages, inter-process communication, data representation, and communication

protocols.

Therefore integrating such heterogeneous components is often a difficult job that needs to

be simplified.

Contributions:

 Exploiting already available programming environments and libraries

 Accelerating developments by using previous development

 Increasing quality attributes of heterogeneous components, e.g., modularity,

adaptability, reusability, extensibility, and interoperability

 Minimize or overcome in lack of a standard for developing heterogeneous

components based on application

 Exploit different communication protocol and their advantages and disadvantages.

 Avoid reimplementation from scratch.

 Development and Implementation of DBUS and SOA based Architecture for

addressing heterogeneity among robotic component.

 Performance Evaluation based on response time and concurrent service running time.

Authors though pointed out [14] Promise and callback based mechanism for asynchronous

implementation of thread based services but if suffers with deadlock due to their

concurrent services. Proposed Architecture is implemented using principles of Service

Based Architecture (SOA) [15,16]. Here robotics components are treated as services in

SOA. Here robotics components are treated as services in SOA. SOA-based architecture

is chosen because of the following features:

 Reusability: For the evaluation of the field, it is required to integrate available

services so that complex systems can be built upon these available services without

wasting time on code replications [6]. As components are built independently following

their own set of protocols and communications strategies. Integrating these together is not

a trivial task. This is also favored because services that are well tested and debugged can

be re-used.

 Easy integration: Integrating services should be cost-efficient and easy. Moreover,

architecture should be flexible enough to integrate modified and new services without

obsoleting or rebuilding the architecture [7]. Such integration should not be too complex.

Integrating new services into architecture should not involve rebuilding the whole

architecture again. Thus, service can be connected on the fly to the architecture.

 Support for different communication protocols and robotics standards: Since there is

no defined standard yet established in robotics, various robotics communities use different

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 17

robotics standards and different communications protocols. Support of various

communication protocols and robotics standards allows components from different

domains to be integrated.

SOA seems to provide all the above-desired features. SOA allows using a well-

defined set of services according to the user requirement. Users can visualize a pool of

services available. They select the services they require for the building of the application.

All these services are loosely coupled and work independently of each other.

Synchronization and consistency are being maintained and monitored so that all the

services can work concurrently. Some services may not be compatible with each other

supporting different incompatible communication protocols or robotic standards. In that

case, it's one of the duties of the architecture to make services talk to each other without

being worried about the protocols and other standards requirements. Such a feature

requires protocol conversion to make components compatible with each other. Moreover,

some of the services may not be on the host computer but rather on the network. A record

of all these services needs to be kept such an efficient service discovery can be made. The

record is checked for the service being called by the user. If service is on the host

computer, it is invoked from the same host; if not, service is requested from the host

having that service. If a service is not present, the system should terminate gracefully with

proper error messages so that the user can diagnose the problem with the application

created.

 The architecture consists of three layers based on the developer's viewpoints.

Viewpoints categorize the developer's expertise. In a team of developers, few may be

good in knowledge of the Robotics domain; few may be good in data handling,

communication and serialization, and de-serialization. So based on the viewpoints, the

three layers are:

 Builder Abstraction Layer

 Core Abstraction Layer

 Components Management and Creation Layer

Fig. 2 depicts how the two components interact with each other with various

subcomponents.

The application builder layer of abstraction consists of tools to develop an application

using a set of available components. In this layer, the developer does not need to know the

inner details of components, e.g., programming, business domains, etc. The core layer

comprises tools for communication, data handling, and low-level issues such as

serialization and de-serializations. The component management and creation layer

supports domain-specific behavior by adding new components which specify and

implement a particular framework. Each component in the framework has its lifecycle,

which the Application Manager initializes. The component Initialization life cycle has

four software modules that are dedicated to communicating with the Application

Manager. The modules that included managing component life cycles are Director,

Spawner, Configurator, and Component Initializer. Director is a port listener application

that accepts requests sent by the Application Manager and passes the request to Spawner,

18 A SOA and DBUS based Robotic Component Interaction

which checks whether the component is already running and passes the parameters

required to Configurator to configure the final component is initialized, and the status is

updated to the Application Manager. Initially, CBARPI's architecture can be seen as

different components working together to get the desired work done. This architecture is

still in its initial stage. It needs a more detailed explanation of its components. Currently,

we have divided it into three components which have sub-components.

 Robot-Interface

 Buffer

Fig. 2. Component integration middleware design.

 Robot-Interface: This is the interface between the robot and another robotics

package. All the commands that need to be executed are sent to the robot interface that

sends the same to the robot. All data that needs to be sent to packages like laser data,

sonar data, and other data is collected by the interface from the robot. This interface can

be assumed as just the data communication factory through which data communication is

taking place. For every application, we have an interface. Through the interface, the

application can read data from the buffer and write data to a buffer. Fig. 4, shows the

interface, which also acts as a data conversion factory that converts data in global format

when writing to a buffer and converts data to a format understandable by the application.

For global data format, we can use XML format. By XML global data format, we can

define our own tags, and using DTD and schemes; we can also restrict the use of invalid

tags. Just by creating a simple parser, we can extract data from the xmL file and convert

same to the format recognized by the application.

 ADAPTERS: Adapters for data conversion are shown in Fig. 3. This component of

the architecture interfaces with the package that is required to be connected. It is the

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 19

adapter that exposes the functionality of that package to other robotic packages. So a

package that needs to be connected must first define its adapter. Just by creating an

adapter, we can add the functionality of that package to the robot. Building an adapter

may require in-depth knowledge of the package, but it can be easily deployed to the

architecture once it's done. This adapter is also responsible for data conversion. It converts

data from the package to global data and global data to package-specific data. Global

Format is already defined in the architecture so that it is understandable by another

component in case they also require that data. This global data format is XML because it's

an easy way to communicate data between components. Such a format can be understood

easily just by creating parsers. Now data that is required by the package should be in the

format that is understood by the package. So we need global data conversion to standard

package type. This work is also done by the adapters. So building an adapter requires a

deep understanding of the package. Peeking inside proprietary packages is difficult, so

creating adapters for such packages may be difficult. But giving adapters a well-defined

format, we can get the adapter from the developers of the package only. Open-source

packages can be integrated easily as the source is visible.

Fig. 3. Data conversion from adapters.

BUFFER: Fig. 4 shows the working of Buffers. This is the temporary storage where data

is written and read from. Robot data obtained from the robot interface is written to this

storage in global data format through the robot interface. Now any application requiring

any robot data can read the data from this interface through their adapters. Now, this is the

duty of the adapter to convert the data required by the application from buffer space into

the format in which the application requires the data. So buffer can be visualized as the

data storage factory where just data is stored, which different applications can read

through their adapters. Since it's a data storage factory, we need a buffer manager which

manages this data. The work of the buffer manager includes cleaning obsolete and old

data that is not required. Change the buffer size according to the requirement.

20 A SOA and DBUS based Robotic Component Interaction

Fig. 4. Interaction between different components of the architecture.

Right now, we are focusing on 2-3 components to connect. We are taking

player/stage [3] and Carmen [6] to integrate. In Carmen [6], we take navigation

functionality, and the player wanders functionality. Navigation functionality is used to

make the robot navigate to the desired set goal in the least distance path, and it also has

avoided algorithm, which is used to avoid collision between moving objects and robots

during its movement to the desired goal. You can also drop this functionality to make a

robot push things that come on the way to the robot's goal position. Using player wander

functionality, you can make the robot wander on a map avoiding collisions with walls and

other things.

 These components provide translational and rotational velocity to make the robot

move according to its algorithm. So just by getting the rotational and translational

velocity, you can make the robot wander. We have developed an interface that, according

to a previously set position of the robot and map in which the robot has to wander,

generates robot position data, velocity data, and laser data. An application that needs to

use that functionality just has to read the file through its interface and can make the robot

move according to another application. The below diagram in Fig. 5 represents data

exchange between CARMEN and PLAYER through BUFFER SPACE (Wander

Algorithm) Robot interacts with BUFFER SPACE, which stores the Wander algorithm of

Player and Navigation algorithm of CARMENT through ROBOT INTERFACE.

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 21

Fig. 5. Architecture implementing Wander Algorithm.

We can interact components using the wander algorithm of PLAYER, CARMEN

using Buffer space. The middleware complexity of asynchronous communication, Inter

robots communication, and data broadcasting to different robots in a network has been

identified by designing a middleware whose architecture is shown in Fig. 6.

Fig. 6. Detailed architecture for component interaction (low-level diagram).

22 A SOA and DBUS based Robotic Component Interaction

5. Implementation Methodology

Our Architecture integrates loosely coupled components based on SOA. An application

needs to be developed using the functionalities provided by different components. A

single component may provide more than one function that may or may not be

interrelated, such as audio and video processing, collision avoidance, and path planning.

Further, it's possible that these packages are not present on the same machine, creating a

distributed environment. At the highest level of abstraction, the proposed architecture will

look as illustrated in Fig. 7.

Fig. 7. High-level abstraction of application.

The proposed architecture can be understood from the following two perspectives:

5.1 Abstraction layers

5.2 Component framework

5.1. Abstraction layers

To provide multiple levels of abstraction, three layers are defined in the proposed

architecture [11]. Each layer provides a certain set of functions to the layer above it. The

three layers are illustrated in Fig. 8

Fig. 8. Different layers of architecture.

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 23

5.1.1. Service layer

It is the lowest layer where the services reside. This layer is also the core layer having all

the functionalities required by the application that needs to be developed. Each service is

nothing but the functionality that a component provides [12]. All the components

integrated are an integral part of the Service Layer. These components may provide much

functionality. These packages may be heterogeneous, have built-in different programming

languages, use different communication protocols, and may present on different machines.

Hence in SOA's terminology Service layer is a collection of Service Providers.

5.1.2. Communication layer

This layer is present above the Service layer and responsible for all types of

communication between the services and application. This layer defines the

communication mechanism, strategies, and protocol. The communication mechanisms

used are published/subscribe and request/reply [13].

5.1.3. Application layer

This layer sits right above Communication Layer. The user interacts with this layer. It

provides functions like service discovery, service invocation, and synchronization

between services.

5.2. Component framework

The proposed architecture is composed of different building blocks. These blocks are

services, interfaces, bus, broker, and application. These building blocks are defined below:

5.2.1. Service

Each of the robotics components can be treated as a service. The application requires

these services to perform the designated task. A service may provide many functionalities

like navigation and path planning.

5.2.2. Interfaces

The interface is component specific which makes the component compatible with the

architecture. Such an interface can be considered middleware between architecture and

components. All the communications between components and architecture occur through

interface only. All the components that need to be connected must have an interface. If a

new component needs to be connected, an interface creation according to the requirement

of that component. Developing an interface requires the deep study of the component to

be connected for insight and knowledge of communication protocols, data formats, and

robotics standards. The interface has different units as listed below:

24 A SOA and DBUS based Robotic Component Interaction

5.2.2.1. Component communication unit (CCU)

This unit communicates with the component, more precisely with the service in which an

application is interested. CMU supports both the control signal and the data signal.

Control signals are responsible for invoking and termination of required service. Data

signals are for the transfer of service-specific data.

5.2.2.2. Data conversion unit (DCU)

Robotics packages are data-specific. They require the data in a particular format and type.

This unit is responsible for converting data from application-specific data to service-

specific data and vice versa. This data is read and written to the buffer built inside DCU to

provide latency.

5.2.2.3. Bus communication unit (BCU)

It is responsible for communication between interface and bus and vice versa. Fig. 9

below shows the component together with the internal interface working.

Fig. 9. Interface.

5.2.3. Bus

The bus is a messaging infrastructure to allow different systems to communicate through a

shared set of interfaces [11]. This is analogous to a bus in a computer system which serves

as the focal point for communication between the CPU, Main memory, and peripherals.

Messages may be data messages or control messages. Control messages enable managing

services, while data messages are service-specific input and output data of services.

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 25

5.2.4. Broker

It synchronizes different services. It's the duty of the broker to discover the services

required for the application to work. This record of services is maintained for rapid

service discovery. This also involves invoking the service in case the service is not

running.

6. Experimental Results

In order to address the challenges associated with concurrency while running two different

services Wall Follower and Space Wanderer and to validate the effective implementation

of concurrency using DBUS and SOA, the experimental setup was designed. There exists

two or more than two robots (N robots), equipped with sonar, position 2D and blob finder

sensors. These robots are asynchronously controlled by a single JVM. There are the

services which are running on these individual robots. It is required to establish a

coordination mechanism between the robots accessing the services concurrently. This

coordination is achieved by using subsumption architecture, where robots subsume their

services to run another service based on detection of colors on their paths. The three

distinguished coordination among the robots are identified. This coordination is based on

group switching, selective switching and individual robot rotation. In group switching, the

group of robots switches their services in groups, in selective switching the selected robots

in a group switch their services whereas rotation service is specifically designed for

individual robot rotation. To implement this, it is assumed that each robot has its own

local state. Table 2 summarizes, the services running based on color detection and robots

local state.

Table 2. Salient features of setup for comparison.

Local State Color Service

0 Blue Wall Fallower

1 Red Space Wanderer

2 Green Rotate Service

3 Gray Space wanderer and hold service in other robot

For getting information regarding wall directions sonar data is required. It is assumed

in the service that sonar data is available. Using this data turns in wall is detected and

robot is made to turn as wall turns. So it starts following the wall in the left direction.

The calculated values can be sent to robot. To any application which can provide

sonar data can use this Wall follower Service. Figure 10 depicts the flow chart of running

services.

 The calculated values can be sent to the robot. Any application which can provide

sonar data can use this Wall follower Service. Fig. 10 depicts the flow chart of running

services.

26 A SOA and DBUS based Robotic Component Interaction

Fig. 10. Flow chart of running services.

All the services that are required need to be connected to the BUS so that application

can connect to these services. We are using DBUS as the messaging BUS. We are

registering all the services to the DBUS using the following code snippet:

register_service (connection, bus_proxy, DBUS_SERVICE);

 Whenever the service is required message to the service is passed using the common

BUS between the application and the service. All the other issues, like synchronization

between two services, need to be handled by the application.

VoidWallFollower (DBusGProxy *,int *,double *ver_x,double *vel_thetha)

Void wander (DBusGProxy *,int *,double *ver_x,double *vel_thetha)

Application is tested on pioneer robot with sonars. The performance comparison of

running different robots using space wanderer service and Wall Follower services is

shown in the below Fig. 11. The experiment was run for 5, 10, 20, 30, 50 and 100 robots

for both the cases independently. As shown in the Fig. 12, the Wall Follower case takes

significantly more response time in comparison to space wanderer case as expected.

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 27

Fig. 11. Time taken in running services.

In all the cases with different number of robots response time is reduced by a factor of

approximately 2.5 to 3 in asynchronous case as shown in Fig. 12.

Fig. 12. Average time taken by robots.

28 A SOA and DBUS based Robotic Component Interaction

7. Conclusion

Service Oriented Architecture seems a good approach for connecting different

heterogeneous robotics packages which are built independently. Moreover hot plugging

the services is one of the most preferred attribute of the built architecture. By hot plugging

we mean the services can be integrated without obsoleting the previously built

architecture. Thus new services can be added whenever it is required. Moreover we know

that services keep on updating. So updated service can be integrated easily. Thus

Architecture is dynamic in the sense of integration. The percentage saving in response

time by using DBUS and SOA ranges from minimum 59.59 % to maximum 66.8 % in

comparison to other communication. Thus response time is reduced by a factor of

approximately 2.5 to 3.0 in space wanderer service case. Therefore, DBUS with SOA

support message communication effectively in robotics application. The conventional

message passing approach of concurrent services implementation produces a well-known

issue of Callback Hell. DBUS and SOA based approaches solves this issue. The Services

switching time during concurrency is reduced by a factor of approximately 1.04 to 1.208.

References

1. R. A. Brooks, Science 253, 1227 (1991). https://doi.org/10.1126/science.253.5025.1227

2. W. Hongxing, D. Xinming, L. Shiyi, T. Guofeng, and W Tianmiao, A Component Based

Design Framework for Robot Software Architecture – Proc. of the 2009 IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IEEE Press, Piscataway, NJ, 2009) pp. 3429-3434.

3. X. Yan, W. Li, and D. Chen, IEEE Int. Conf. on Robotics and Biomimetics, 750 (2006).

4. C. Cote, Y. Brosseau, D. Letourneau, C. Raievsky, and F. Michaud, Int. J. Adv. Robotic Syst.

1729 (2006). https://doi.org/10.5772/5758

5. M. Montemerlo, N. Roy, and S. Thrun, Perspectives on Standardization in Mobile Robot

Programming: The Carnegie Mellon Navigation (CARMEN) Toolkit, Int. Conf. on Intelligent

Robots and Syst. Las Vegas, 3, 2436 (2003).

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software (Addison-Wesley, 1994).

7. W. R. Zwicky, PhD thesis, University of Illinois at Urbana-Champaign (2008).

8. R. K. Karmani, A. Shali, and G. Agha, Actor Frameworks for the JVM Platform: A

Comparative Analysis - 7th Int. Conf. on Principles and Practice of Programming in Java, 11

(2009). https://doi.org/10.1145/1596655.1596658

9. A. Elkady and T. Sobh, J. Robotics 959013 (2012). https://doi.org/10.1155/2012/959013

10. D. Létourneau, C. Côté, C. Raïevsky, Y. Brosseau, and F. Michaud, Springer Tracts on Adv.

Robotics, 221 (2006).

11. D. Spinellis, Another Level of Indirection, in Beautiful Code: Leading Programmers Explain

How They Think, Edited by A. Oram and G. Wilson (O'Reilly Media, Inc. 2007), pp. 279–291.

12. Software as a Service: Strategic Backgrounder, Software & Information Industry Association,

(2001).

13. Messaging Pattern in Service oriented Architecture, http://msdn.microsoft.com/en-

us/library/aa480027.aspx, retrieved September 2010.

14. Enterprise Message Bus, http://en.wikipedia.org/wiki/Enterprise_service_bus, retrieved

September 2010.

15. R. P. Srivastava and G. C. Nandi, Controlling Multi Thread Execution using Single Thread

Event Loop – Int. Conf. on Innovations in Control, Communication and Information Systems

(ICICCI) (2017) pp. 1-7. https://doi.org/10.1109/ICICCIS.2017.8660809

https://doi.org/10.1126/science.253.5025.1227
https://doi.org/10.5772/5758
https://doi.org/10.1145/1596655.1596658
https://doi.org/10.1155/2012/959013
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://en.wikipedia.org/wiki/Enterprise_service_bus
https://doi.org/10.1109/ICICCIS.2017.8660809

R. P. Srivastava et al., J. Sci. Res. 15 (1), 11-29 (2023) 29

16. R. P. Srivastava and G. C. Nandi, Integration of Robotics Components and Verification using

Petri Net – Int. Conf. on Innovations in Control, Communication and Information Systems

(ICICCI) (2017) pp. 1-7. https://doi.org/10.1109/ICICCIS.2017.8660756

17. T. K. Kaiser, C. Lang, F. A. Marwitz, C. Charles, S. Dreier, J. Petzold, M. F. Hannawald, M. J.

Begemann, and H. Hamann, Distributed Autonomous Robotic Systems 190 (2021).

https://doi.org/10.1007/978-3-030-92790-5_15

18. M. Mohammadi and M. Mukhtar, Service-Oriented Architecture and Process Modeling - Int.

Conf. on Information Technologies (InfoTech) (2018) pp. 1-4.

https://doi.org/10.1109/InfoTech.2018.8510730

19. R. Srivastav, G. Nandi, R. Shukla, and H. Verma, IAES Int. J. Robotics Automat. (IJRA) 8,

217 (2019). https://doi.org/10.11591/ijra.v8i4.pp217-244

20. R. K. Megalingam, S. Tantravahi, H. S. S. K. Tammana, N. Thokala, H. S. R. Puram, and N.

Samudrala, Robot Operating System Integrated robot control through Secure Shell(SSH) - Int.

Conf. on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

(2019) pp. 569-573. https://doi.org/10.1109/RDCAPE47089.2019.8979113

21. W. S. Cheong, S. F. Kamarulzaman, and M. A. Rahman, Implementation of Robot Operating

System in Smart Garbage Bin Robot with Obstacle Avoidance System, Emerging Technology

in Computing, Communication and Electronics (ETCCE) (2020) pp. 1-6.

https://doi.org/10.1109/ETCCE51779.2020.9350912,

22. P. Leger, H. Fukuda, and I. Figueroa, J. Universal Comput. Sci. 27, 955 (2021).

https://doi.org/10.3897/jucs.72205

https://doi.org/10.1109/ICICCIS.2017.8660756
https://doi.org/10.1007/978-3-030-92790-5_15
https://doi.org/10.1109/InfoTech.2018.8510730
https://doi.org/10.11591/ijra.v8i4.pp217-244
https://doi.org/10.1109/RDCAPE47089.2019.8979113
https://doi.org/10.1109/ETCCE51779.2020.9350912
https://doi.org/10.3897/jucs.72205

