

Available Online

JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/JSR

J. Sci. Res. 14 (3), 699-720 (2022)

A Unified Approach to the Sandor-Smarandache Function

S. M. S. Islam^{1*}, A. K. Z. Ahmed², H. Gunarto³, A. A. K. Majumdar⁴

¹Department of Mathematics, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh

²World University of Bangladesh, Dhanmondi Road #4, Dhaka 1205, Bangladesh

³Ritsumeikan Asia-Pacific University, 1-1 Jumonjibaru, Beppu-shi 874-8577, Japan

⁴Beppu-shi Oaza Tsurumi, Renace Beppu #205, Beppu-shi 874-0842, Japan

Received 15 October 2021, accepted in final revised form 26 June 2022

Abstract

The Sandor-Smarandache function, SS(n), is a recently introduced Smarandache-type arithmetic function, which involves binomial coefficients. It is known that SS(n) does not possess many of the common properties of the classical arithmetic functions of the theory of numbers. Sandor gave the expression of SS(n) when $n \ (\geq 3)$ is an odd integer. It is found that SS(n) has a simple form when n is even and not divisible by 3. In the previous papers, some closed-form expressions of SS(n) have been derived for some particular cases of n. This paper continues to find more forms of SS(n), starting from the function SS(24m). Particular attention is given to finding necessary and sufficient conditions such that SS(n) = n-5 and SS(n) = n-6. Based on the properties of SS(n), some interesting Diophantine equations have been studied. The study reveals that the form of SS(n) depends on the prime factors of the integer n in the natural order of the primes.

Keywords: Sandor-Smarandache function; Binomial coefficient; Diophantine equation.

© 2022 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: <u>http://dx.doi.org/10.3329/jsr.v14i3.56205</u> J. Sci. Res. **14** (3), 699-720 (2022)

1. Introduction

In the late 1970s, the celebrated Romanian-American number theorist, Florentin Smarandache, proposed a new arithmetic function called the Smarandache function after him. Since then, more Smarandache-type arithmetic functions have been introduced in the mathematical literature. These functions are different from the traditional arithmetic functions in many respects. Because of their special features, these functions drew the attention of different researchers. Sandor [1] introduced a new Smarandache-type function. The function, called the Sandor-Smarandache function, is denoted by SS(n), and is defined as follows:

$$SS(n) = max\left\{k : 1 \le k \le n - 2, n \text{ divides } \binom{n}{k}\right\}, n \ge 5,$$
(1.1)

^{*} Corresponding author: sislam.math@gmail.com

where by convention,

$$SS(1) = 1, SS(2) = 1, SS(3) = 1, SS(4) = 1, SS(6) = 1.$$
 (1.2)

In the defining equation (1.1), $C(n, k) = \binom{n}{k} = \frac{n!}{k! (n-k)!}, 0 \le k \le n$, are the binomial coefficients, which are all integers (Hardy and Wright [2, Theorem 73]). Throughout this paper, the following simplified form of C(n, k) is used:

$$C(n,k) = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}, 0 \le k \le n.$$
(1.3)

The problem may now be reformulated as follows: Given any integer $n \ (\geq 7)$, find the minimum integer k such that k! divides (n-1)(n-2)...(n-k+1), where $1 \le k \le n-2$. With this minimum k, SS(n) is given by SS(n) = n-k.

Islam et al. [3] proved the results below.

Lemma 1.1: SS(n) = n-2 if and only if $n (\ge 7)$ is an odd integer.

Lemma 1.2: SS(n) = n - 3 if and only if *n* is even and is not divisible by 3.

Later, Islam and Majumdar [4] established the following result.

Lemma 1.3: SS(n) = n-4 if and only if *n* is of the form n = 6(4m+3) for any integer $m \ge 0$. **Corollary 1.1:** Let SS(n) = n-4 for some (positive) integer *n*. Then, $SS(2n) \ne 2n-4$. **Proof:** If SS(n) = n-4, then by Lemma 1.3, n = 6(4a+3) for some integer *a*. But then, 2n

cannot be of the form 6(4m+3).

Lemma 1.1 and Lemma 1.2 show that SS(n) has a simple form when *n* is odd or when *n* is even but not divisible by 3. Lemma 1.3 finds the necessary and sufficient conditions such that SS(n) = n - 4. Thus, the problem of finding SS(n) in the remaining cases remains a challenging problem. The SS(n) forms may be demonstrated schematically with the help of Fig. 1.1 below.

Fig. 1.1. A tree diagram of SS(n).

From the tree above, it is clear that the problems of interest are the ones given in the final branch. Majumdar [5] concentrated solely on the form SS(p + 1) functions, where p is an odd prime. Later, the problem was studied to some extent by Islam, and Majumdar

[6], who derived the expressions of SS(2mp), SS(6mp), SS(60mp), and SS(420mp), where p is an odd prime and m is any (positive) integer. Islam *et al.* [3] subsequently found explicit forms of SS(6t), SS(12t), SS(18t), SS(42t), SS(30t), and SS(210t) for some particular cases of t. Later, Majumdar and Ahmed [7] extended the results of Islam *et al.* [3] by considering all the possible cases involved in SS(210t). Recently, Islam and Majumdar [4] derived the expressions of SS(120m), SS(840m), SS(9240m), and SS(120120m) for some particular cases of m.

This paper first derives the necessary and sufficient conditions such that SS(n) = n-5and SS(n) = n-6. This is done in Section 3 in Theorem 3.1 and 3.2, respectively. Theorem 3.1 shows that one needs to consider the function SS(12m), $m (\ge 1)$ being an integer. And Theorem 3.2 shows that attention needs to be given to the study of the function SS(60(6m+5)), $m \ge 0$ being an integer. Thus, starting from SS(12m), one has to consider the functions SS(60m), and then SS(420m), SS(4620m) in succession. Some remarks are made in Section 4, based on the results. Some interesting equations involving SS(n) have been derived. Section 2 summarizes the relevant background materials. The paper concludes with some concluding remarks in Section 5. This paper's unified and detailed analyses suggest that the form of SS(n) depends on the prime factors 2, 3, 5, ... (in this order) of the integer *n*. Another objective is to study how the form of SS(n) changes if some prime factor of *n* is repeated. At the end of the paper, four tables are appended, which give respectively the values of SS(60m), SS(420m), SS(4620m), SS(4620m), and SS(60060m), calculated on a computer, using equation (1.3).

2. Background Material

This section gives the necessary background material that would be needed later. These are given in the following lemmas. For proof, the readers are referred to Islam *et al.* [3]. **Lemma 2.1:** (*Fundamental Theorem of Arithmetic*) Let *a* and *b* be two (positive) integers with (a, b) = 1. Let the integer *N* be such that both *a* and *b* divide *N*. Then, *ab* divides *N*.

An alternative proof of Lemma 2.1 may be found in Olds, Lax, and Davidoff [8]. **Lemma 2.2:** Let *A* and *B* be two (positive) integers such that *A* is divisible by the integer *a* and *B* is divisible by the integer *b*. Then, *AB* is divisible by *ab*.

Lemma 2.3: For any integer $a \ge 1$ fixed, a(a-1)...(a-s+1) is divisible by s!, where s is an integer with $1 \le s \le a$.

Lemma 2.3 states that the product of s consecutive (positive) integers is divisible by s!; for proof, the reader refers to Hardy and Wright [2]. The result below follows readily from Lemma 2.3.

Corollary 2.1: For any integer $a \ge 1$ fixed, let $P(a, s) \equiv a(a-1)...(a-s+1)$ for any integer $1 \le s \le a$. Then, *s* divides (a-1)(a-2)...(a-s+1) if and only if *s* does not divide *a*.

The paper's main results are derived in Section 3, where the following result would be required frequently.

Lemma 2.4: Let *A*, *B*, and *C* be any three integers. The Diophantine equation Ax + By = C has an (integer) solution if and only if *C* is divisible by $D \equiv (A, B)$. Moreover, if (x_0, y_0) is a

solution, then there are an infinite number of solutions, given parametrically by $x = x_0 + (\frac{B}{D})t$, $y = y_0 + (\frac{-A}{D})t$ for any integer *t*.

Proof: See, for example, Gioia [9].

In applying Lemma 2.4, one has to find the solution of the equation Ax + By = C with minimum (positive) x_0 (in the sense that there is no solution x less than x_0). Then, if, in particular, (A, B) = 1, then the solutions of the equation are given simply by $x = x_0 + Bt$, $y = y_0 - At$, where t is a parameter. On the other hand, if (A, B) = D > 1, it is sufficient to consider the simplified equation (A/D)x + (B/D)y = C/D, where (A/D, B/D) = 1.

Another interesting result is the following (see Hardy and Wright [2] for proof). **Lemma 2.5:** (*Dirichlet Theorem*) If A and B are two integers with A > 0 and (A, B) = 1, then there are infinitely many primes of the form Ax + B, x (> 0) being an integer. The main results of the paper are given in the next section.

3. Main Results

First, the following two general results are proved.

Theorem 3.1: Let $N \equiv N(p_1, p_2, ..., p_k) = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$, where $p_1, p_2, ..., p_k$ are the first *k* odd primes in increasing order (so that $2 < p_1 < ... < p_k$), $\alpha_1, \alpha_2, ..., \alpha_k \ge 1$ and $\alpha \ge 1$ are fixed integers. Then, $SS(Nm) \ne Nm - p_k$ for any integer $m \ge 1$. **Proof:** Since

$$C(Nm, Nm - p_k) = Nm[\frac{(Nm - 1)(Nm - 2) \dots (Nm - p_k + 1)}{2 \times 3 \times \dots \times p_k}],$$

and since p_k does not divide any of Nm-1, Nm-2, ..., $Nm-p_k+1$, it follows that the term inside the square bracket cannot be an integer.

Theorem 3.2: Let $N \equiv N(p_1, p_2, ..., p_k) = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$, where $p_1, p_2, ..., p_k$ are the first k odd primes with $2 < p_1 < ... < p_k$, $\alpha \ge 1$ and $\alpha_1, \alpha_2, ..., \alpha_k \ge 1$ are fixed integers. Let $p (> p_k)$ be any prime. Then, $SS(Npm) \ne Npm - p_k$ for any integer $m \ge 1$. **Proof:** Since

$$C(Npm, Npm - p_k) = Npm[\frac{(Npm - 1)(Npm - 2)\dots(Npm - p_k + 1)}{2 \times 3 \times \dots \times p_k}],$$

it follows that the term inside the square bracket cannot be an integer.

To illustrate the application of the above two theorems, note that, by Theorem 3.1,

 $SS(30m) \neq 30m - 5$ for any integer $m \ge 1$.

It then follows, by virtue of Theorem 3.2, that

 $SS(30mp) \neq 30mp - 5$ for any integer $m \ge 1$, and for any prime p.

The following theorem gives two sets of necessary and sufficient conditions: SS (n) = n-5. **Theorem 3.3:** Let n (>0) be an integer. Then,

$$SS(n) = n - 5 \tag{3.1}$$

if and only if *n* is one of the following two forms :

(1) n = 12m for some integer $m \ge 0$, where *m* is not divisible by 5,

(2) n = 6(4m+1) for some integer $m \ge 0$ with $m \ne 5u+1$, $u \ge 0$ being an integer,

Proof: By Lemma 1.1 and Lemma 1.2, any integer *n* satisfying (3.1) must be even and divisible 3; moreover, by Lemma 1.3, $n \neq 6(4u+3)$ for any integer $u \ge 0$. Now, consider the expression:

$$C(n, n-5) \equiv n[\frac{(n-1)(n-2)(n-3)(n-4)}{2 \times 3 \times 4 \times 5}].$$

Here, the numerator of the term inside the square bracket is divisible by 3 (by Lemma 2.1, coupled with Lemma 2.3); also, the numerator is divisible by 5 if and only if 5 does not divide n. Hence, the term inside the square bracket is an integer if and only if one of the following three conditions is satisfied:

(1) 4 divides (n-4), (2) 4 divides (n-2), (3) 8 divides (n-4). Moreover, such an *n* must be divisible by 3.

In case (1), 4 divides (n-4) if and only if *n* is a multiple of 4. Since *n* must also be divisible by 3, it follows by Lemma 2.1 that *n* must be of the form n = 12m for some integer $m \ge 1$. Note that, if n = 12m then $n \ne 6(4u + 3)$, for otherwise, 12m = 6(4u + 3), which, by virtue of Lemma 2.4, has no solution.

In Case (2), 4 divides (n - 2); moreover, *n* is divisible by 3. This leads to the following combined Diophantine equation:

 $n=4\alpha+2=3\beta$ for some integers $\alpha \ge 1, \beta \ge 2$,

whose solution is $\alpha = 3m + 1$ for any integer $m \ge 0$. Thus,

n = 4(3m+1) + 2 = 6(2m+1).

Now, considering the Diophantine equation 6(2m + 1) = 6(4u + 3), the solution is found to be m = 2u + 1. Thus, m must be even, so that

 $n = 6(4m + 1), m \ge 0$ being an integer.

Since 5 does not divide *n*, the Diophantine equation to be considered is

6(4m+1) = 5x for some integer x (>1),

whose solution is m = 5u + 1 for any integer $u \ge 0$.

In Case (3), 8 divides (n-4); also, *n* is divisible by 3. Thus,

n = 8y + 4 = 3z for some integers $y \ge 1, z \ge 4$,

whose solution is y = 3m + 1, $m \ge 0$ being any integer. Hence,

n = 8(3m+1) + 4 = 12(2m+1).

Thus, case (3) is a particular case of the case (1).

Using Theorem 3.1, the following values are found:

SS(12) = 7, *SS*(24) = 19, *SS*(36) = 31, *SS*(48) = 43, *SS*(72) = 66, *SS*(96) = 91,

SS(54) = 49, *SS*(78) = 73, *SS*(102) = 97, *SS*(126) = 121, *SS*(174) = 169,

Note that, by Theorem 3.3, SS(6) = 1, which is consistent with the conventional value. Also, Lemma 3.7 in Islam *et al.* [3] follows directly from part (1) of Theorem 3.3. Moreover, parts (2) and (3) of Theorem 3.3 prove more than those proved in Proposition 3.1 and Proposition 3.2 in Islam Majumdar [4] by different approaches.

The following results are the trivial consequences of Theorem 3.3.

Corollary 3.1: For any prime $p \neq 5$, SS(12p) = 12p - 5.

Corollary 3.2: Let SS(n) = n-5 for some (positive) integer *n*. Then, SS(2n) = 2n-5.

Corollary 3.3: For any prime $p \neq 5$, SS(24p) = 24p - 5.

After having the expression of SS(12m) ($m \ (\ge 1)$ being an integer not divisible by 5), the expressions of SS(12m+i) for $1 \le i \le 11$) are given in the corollary below.

Corollary 3.4: For any integer $m \ge 1$,

(1) SS(12m+1) = 12m-1, (2) SS(12m+2) = 12m-1, (3) SS(12m+3) = 12m+1, (4) SS(12m+4) = 12m+1, (5) SS(12m+5) = 12m+3, (6) (a) SS(12m+6) = 12m+2, if *m* is odd, (b) $SS(12m+6) = \begin{cases} 12m+1, if m \text{ is even with } m \neq 10s+2, s \ge 0\\ 12m-1, if m = 10s+2, s \ge 0 \end{cases}$ (7) SS(12m+7) = 12m+5, (8) SS(12m+8) = 12m+5, (9) SS(12m+9) = 12m+7, (10) SS(12m+10) = 12m+7, (11) SS(120m+11) = 12m+9. of: Parts (1) (3) (5) (7) (9) and (11) follow readily from Lemma 1.1

Proof: Parts (1), (3), (5), (7), (9), and (11) follow readily from Lemma 1.1, while parts (2), (4), (8), and (10) follow from Lemma 1.2. It thus remains to prove part (6). Consider the expression:

$$C(12m+6, 12m+2) \equiv (12m+6)\left[\frac{(12m+5)(12m+4)(12m+3)}{2\times3\times4}\right]$$
$$= (12m+6)\left[\frac{(12m+5)(3m+1)(4m+1)}{2}\right].$$

The above expression shows that the term inside the square bracket is an integer if and only if 3m + 1 is even, if and only if *m* is odd. This proves part (6a). To prove part (6b), let *m* be even. Now, consider the expression:

To prove part (60), let m be even. Now, consider the expression:

$$C(12m + 6, 12m + 1) \equiv (12m + 6)\left[\frac{(12m + 5)(3m + 1)(4m + 1)(12m + 2)}{2\times 5}\right]$$
$$= (12m + 6)\left[\frac{(12m + 5)(3m + 1)(4m + 1)(6m + 1)}{5}\right].$$

Clearly, the term inside the square bracket is an integer if 12m + 6 is not a multiple of 5. Thus, the Diophantine equation to be considered is

 $12m + 6 = 5\alpha$ for some integer $\alpha \ge 1$,

whose solution is m = 5s + 2, $s \ge 0$. Note that, since *m* is even, *s* must also be even. Now, let m = 10s + 2, $s \ge 0$. The expression

$$C(12m+6, 12m) \equiv (12m+6)\left[\frac{(12m+5)(3m+1)(4m+1)(6m+1)(12m+1)}{5\times 6}\right]$$

shows that $SS(12m+6) \neq 12m$ for any $m \ge 1$. So, consider the expression:

$$\mathcal{C}(12m+6,12m-1) \equiv (12m+6)\left[\frac{(12m+5)(3m+1)(4m+1)(6m+1)(12m+1)(12m)}{5\times6\times7}\right].$$

Considering the Diophantine equation $12m + 6 = 7\alpha$ (for some integer $\alpha > 1$), the solution is found to be m = 10t + 3, $t \ge 0$. This shows that, under the given condition (that $m = 10s + 2, s \ge 0$), 12m + 6 is not divisible by 7. Hence, the term inside the square bracket is an integer. All these complete the proof of the corollary.

In the course of proving Corollary 3.4, the following result has also been proved.

Corollary 3.5: There is no integer *m* such that 12m + 6 is divisible by both 5 and 7.

Part (6) of Corollary 3.4 gives the following values:

SS(18) = 14, SS(42) = 38, SS(66) = 62, SS(90) = 86, SS(114) = 110, SS(138) = 134, SS(54) = 49, SS(78) = 73, SS(102) = 97, SS(126) = 121, SS(174) = 169, SS(30) = 23, SS(150) = 143, SS(270) = 263, SS(390) = 383, SS(510) = 503.

It may be mentioned here that, writing m = 2u + 1, part (6a) of Corollary 3.4 may be recast in the form

SS(24u + 18) = 24u + 14 for all $u \ge 1$,

which is precisely Lemma 1.3. Again, writing m = 2u in part (6b) of Corollary 3.4, one gets

$$SS(24u+6) = \begin{cases} 24u+1, & \text{if } u \neq 5x+1, x \ge 0\\ 24u-1, & \text{if } u = 5y+1, y \neq 7z+5, z \ge 0 \end{cases}$$
(3.2)

which has been derived earlier by a different approach (see Proposition 3.1 in Islam *et al.* [4]). The expression in (3.2) needs some explanation : If u = 5x + 1 for some integer $x \ge 1$, then SS(24u + 6) = 24u - 1 provided that 24u + 6 is not divisible by 7. Thus, the Diophantine equation to be considered is $24u + 6 = 7\alpha$ (for some integer $\alpha > 0$), whose solution is $u = 7\beta + 5$, $\beta \ge 0$. Now, the solution of the combined equation $5y + 1 = 7\beta + 5$ is y = 7z + 5, $z \ge 0$.

The next theorem gives the necessary and sufficient conditions such that SS(n) = n - 6. **Theorem 3.4:** Let n (>0) be an integer divisible by 5. Then,

$$SS(n) = n - 6 \tag{3.3}$$

if and only if n = 60(6m + 5) for any integer $m \ge 0$.

Proof: Let n (>0) be an integer divisible by 5.

Consider the expression:

$$C(n, n-6) \equiv n[\frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{2 \times 3 \times 4 \times 5 \times 6}].$$

Now, the numerator of the term inside the square bracket is divisible by $2\times3\times5$ (by Lemma 2.1, coupled with Lemma 2.3). Hence, the term inside the square bracket is an integer if and only if the following two conditions are satisfied simultaneously:

(1) 8 divides (n-4), (2) 9 divides (n-3).

By Condition (1), 8 divides (n-4), so that

 $n = 8\alpha + 4$ for some integer $\alpha \ge 1$, and by Condition (2),

 $n = 9\beta + 3$ for some integer $\beta \ge 1$.

Now, the solution of the combined Diophantine equation $8\alpha + 4 = 9\beta + 3$ is $\alpha = 9x + 1$, $x(\ge 0)$ being an integer. Therefore,

n = 8(9x + 1) + 4 = 12(6x + 1).

Since 5 divides n, one needs to consider the Diophantine equation

 $12(6x+1) = 5\gamma$ for some integer $\gamma(>1)$,

whose solution is x = 5m + 4 for any integer $m \ge 0$. Hence, finally

n = 12[6(5m+4)+1] = 60(6m+5).

Note that, n-4 = 8(45m+37) is, in fact, divisible by 8.

Theorem 3.4 gives the following values:
SS(300) = 294, $SS(660) = 654$, $SS(1020) = 1014$, $SS(1380) = 1374$.
Note that, Theorem 3.4 may be put in the following form
$SS(60t) = 60t - 6 \text{ if and only if } t = 6s + 5 \text{ for any integer } s \ge 0. $ (3.4)
The above result is stronger than the previous results found in Islam et al. [3, Lemma 3.8]
and Islam and Majumdar. [4, Proposition 3.2] by different approaches.
Note that, Lemma 1.2 may be rewritten as follows:
$SS(6m) = 6m - 4$ if and only if $m = 4s + 3$, $s \ge 0$. (3.5)
Also, Theorem 3.3 may be recast in the following equivalent form :
SS(6m) = 6m - 5 (3.6)
if and only if 5 does not divide <i>m</i> , and <i>m</i> is of one of the following three forms:
(1) $m = 2s, s \ge 1, (2)$ $m = 4s + 1, s \ge 0, (3)$ $m = 2(2s + 1), s \ge 0.$
Finally, Theorem 3.4 may be rewritten in the following equivalent form
$SS(60m) = 60m - 6 \text{ if and only if } m = 6s + 5, s \ge 0 \text{ being any integer.} $ (3.7)
In view of Theorem 3.3,
$SS(60m) \le 60m - 6$ for any $m \ge 1$,
and in view of Theorem 3.4, we have the following results.
Corollary 3.6: $SS(60m) \le 60m - 7$ for any $m \ne 6s + 5$, $s \ge 0$.
Corollary 3.7: There is an infinite number of primes <i>p</i> such that $SS(60p) = 60p - 6$.
Proof: Let p be a prime of the form $p = 6s + 5$, $s \ge 0$. By Lemma 2.5, there is an infinite
number of primes of this form. With such a prime p, by (3.7), $SS(60p) = 60p - 6$.
In Majumdar [10], the following result has been established.
Lemma 3.1: $SS(60m) = 60m - 7$ if m is not divisible by 7 with $m \neq 6s + 5$, $s \ge 0$.
The next lemma considers SS(420m). Since
$C(420m, 420m - 7) \equiv 420m \left[\frac{(420m - 1)(420m - 2)(420m - 3)(420m - 4)(420m - 5)(420m - 6)}{2 \times 3 \times 4 \times 5 \times 6 \times 7}\right]$
$=420m\left[\frac{(420m-1)(210m-1)(140m-1)(105m-1)(84m-1)(70m-1)}{2}\right],$

it follows that $SS(420m) \neq 420m - 7$ for any integer $m \ge 1$. This is, in fact, a particular case of Theorem 3.1. It then follows, by Theorem 3.2 that

 $SS(420mp) \neq 420mp - 7$ for any integer $m \ge 1$, and for any prime p.

7

Lemma 3.2: Let $m \ge 1$ be an integer. Then,

(1) SS(420m) = 420m - 6, if m = 6s + 5, $s \ge 0$,

(2) SS(420m) = 420m - 8, if m = 8s + 1, $s \neq 3t + 2$, $t \ge 0$,

(3) SS(420m) = 420m - 9, if m = 9s + 2, s is even (including 0),

or, if m = 9t + 4, $t \neq 8b + 5$, $b \ge 0$,

(4) SS(420m) = 420m - 10, if m = 2(10s + 7), $s \neq 9u + 3$, $s \neq 9v + 4$, $u \ge 0$, $v \ge 0$, or if m = 20t + 9, $t \neq 3a + 1$, $t \neq 2b$, $t \neq 9c + 1$, $t \neq 9d + 2$, $a, b, c, d \ge 0$,

(5) SS(420m) = 420m - 11, if 11 does not divide m and $m \neq 8a + 1$, $m \neq 9b + 2$, $m \neq 9c$ +4, $m \neq 6d + 5$, $m \neq 2(10e + 7)$, $m \neq 20f + 9$, $a \ge 0$, $b \ge 0$, $c \ge 0$, $d \ge 0$, $e \ge 0$, $f \ge 0$.

Proof: To prove part (1), consider the expression:

$$C(420m, 420m - 6) \equiv 420m \left[\frac{(420m - 1)(420m - 2)(420m - 3)(420m - 4)(420m - 5)}{2 \times 3 \times 4 \times 5 \times 6}\right]$$
$$= 420m \left[\frac{(420m - 1)(210m - 1)(140m - 1)(105m - 1)(84m - 1)}{6}\right].$$

Now, in order that the term inside the square bracket is an integer, 3 must divide 140m-1, and 2 must divide 105m-1, leading to the two Diophantine equations

 $140m-1=3\alpha$, $105m-1=2\beta$ for some integers $\alpha > 0$, $\beta > 0$.

The solutions of the above equations are m = 3x + 2, $x \ge 0$ and m = 2y + 1, $y \ge 0$ respectively. Then, the combined Diophantine equation is 3x + 2 = 2y + 1, whose solution is x = 2u + 1, $u \ge 0$. Therefore, m = 3(2u + 1) + 2 = 6u + 5, $u \ge 0$.

To prove part (2), let the integer *m* be such that
$$m \neq 6u + 5$$
, $u \ge 0$. Consider

$$C(420m, 420m - 8) \equiv 420m \left[\frac{(420m - 1)(210m - 1)(140m - 1)(105m - 1)(84m - 1)(70m - 1)(420m - 7)}{7 \times 8}\right].$$

Here, the term inside the square bracket is an integer if and only if 105m-1 is divisible by 8, that is, if and only if

105m - 1 = 8a for some integer a > 0.

The solution of the above equation is m = 8s + 1, $s \ge 0$. Considering the combined equation 8s + 1 = 6u + 5, the solution is found to be s = 3t + 2, $t \ge 0$.

To prove part (3), let the integer *m* be such that $m \neq 6u + 5$, $u \ge 0$, $m \neq 8s + 1$, $s \ge 0$. Consider the expression:

$$C(420m, 420m - 9) \equiv 420m [\frac{(420m - 1)(210m - 1)(140m - 1)(105m - 1)(84m - 1)(70m - 1)(60m - 1)(420m - 8)}{8 \times 9}]$$

= $420m [\frac{(420m - 1)(210m - 1)(140m - 1)(105m - 1)(84m - 1)(70m - 1)(60m - 1)(105m - 2)}{2 \times 9}].$

In order to find the condition such that the term inside the square bracket is an integer, first note that one of 105m - 1 and 105m - 2 is even. Thus, it is sufficient to find the condition such that the numerator of the term inside the square bracket is divisible by 9. Here, there are two possibilities, namely, either 9 divides 70m - 1, or else 9 divides 140m - 1. In the first case,

 $140m - 1 = 9\alpha$ for some integer $\alpha > 0$,

whose solution is m = 9u + 2, $u \ge 0$. Now, the solution of the equation 9u + 2 = 6x + 5 is $u = 2\beta + 1$, $\beta \ge 0$, while the solution of the equation 9u + 2 = 8s + 1 is u = 8a + 7, $a \ge 0$. Note that if *u* is restricted to even values (including 0), then $u \ne 8a + 7$ for any $a \ge 0$.

The second possibility leads to the Diophantine equation $70m - 1 = 9\beta$ for some integer $\beta > 0$,

with the solution m = 9v + 4, $v \ge 0$. Note that, the combined equation 9v + 4 = 6x + 5 has no solution (by virtue of Lemma 2.4); also, note that, the combined equation 9v + 4 = 8s + 1 has the solution v = 8b + 5, $b \ge 0$.

To prove part (4), let the integer *m* be such that $m \neq 6a + 5$, $a \ge 0$, $m \neq 9b + 2$, $b \ge 0$, $m \neq 9c + 4$, $c \ge 0$. Consider the expression below:

$$C(420m, 420m - 10) \equiv 420m [\frac{(420m - 1)(210m - 1)(140m - 1)(105m - 1)(84m - 1)(70m - 1)(60m - 1)(105m - 2)(420m - 9)}{2\times9\times10}]$$

$$= 420m \left[\frac{(420m-1)(210m-1)(140m-1)(105m-1)(84m-1)(70m-1)(60m-1)(105m-2)(140m-3)}{2\times3\times10}\right].$$

Now, one of 140m-1, 70m-1 and 140m-3 is divisible by 3 (by Lemma 2.3). Therefore, the term inside the square bracket is an integer if 84m-1 is divisible by 5 and either 105m-2, or else 105m-1 is divisible by 4. The first possibility leads to the Diophantine equations

 $84m-1=5\alpha$, $105m-2=4\beta$ for some integers $\alpha > 0$, $\beta > 0$, whose solutions are m = 5u + 4, $u \ge 0$, and m = 4v + 2, $v \ge 0$ respectively. The solution of the combined Diophantine equation 5u + 4 = 4v + 2 is u = 4s + 2, $s \ge 0$, so that

 $m = 5(4s + 2) + 4 = 2(10s + 7), s \ge 0.$

Now, the second possibility gives rise to the equation $105m - 1 = 4\gamma$ for some integer $\gamma > 0$, whose solution is m = 4w + 1, $w \ge 0$. The solution of the combined equation 5u + 4 = 4w + 1 is u = 4t + 1, $t \ge 0$, so that m = 5(4t + 1) + 4 = 20t + 9.

To complete the proof of part (3), it remains to find the conditions such that the conditions of part (1) and part (2) are not satisfied. Clearly, the combined equation 2(10s + 7) = 6x + 5 has no solution; also, the equation 2(10s + 7) = 8y + 1 has no solution. Now, considering the Diophantine equation 2(10s + 7) = 9u + 2, the solution is found to be s = 9a + 3, $a \ge 0$, while the solution of the equation 2(10s + 7) = 9v + 4 is s = 9b + 4, $b \ge 0$. Next, we have to consider the following combined equations:

20t+9=6a+5, 20t+9=8b+1, 20t+9=9c+2, 20t+9=9d+4; the solutions of the above equations are t = 3a+1, $a \ge 0$, t = 2b, $b \ge 0$, t = 9c+1, t = 9d+2respectively.

Finally, to prove part (5), let the integer *m* be such that all the conditions in parts (1) - (4) are violated. Consider the expression:

$$\begin{split} & C(420m, 420m-11) \equiv \\ & 420m[\frac{(420m-1)(210m-1)(140m-1)(105m-1)(84m-1)(70m-1)(60m-1)(105m-2)(140m-3)(420m-10)}{2\times3\times10\times11}] \\ & = 420m[\frac{(420m-1)(210m-1)(140m-1)(105m-1)(84m-1)(70m-1)(60m-1)(105m-2)(140m-3)(42m-1)}{2\times3\times11}]. \end{split}$$

Now, one of 105m-1 and 105m-2 is even; also, one of 140m-1, 70m-2, and 140m-3 is divisible by 3. Therefore, if *m* is not divisible by 11, then the term inside the square bracket is an integer.

Lemma 3.2 gives the following values:

SS(2100) = 2094, SS(4620) = 4614, SS(7140) = 7134, SS(9660) = 9654, SS(12180) = 12174,

SS(420) = 412, *SS*(3780) = 3772, *SS*(10500) = 10492, *SS*(13860) = 13852,

SS(840) = 831, *SS*(8400) = 8391, *SS*(15960) = 15951, *SS*(23520) = 23511,

SS(1680) = 1671, SS(5460) = 5451, SS(9240) = 9231, SS(13020) = 13011,

SS(5880) = 5870, *SS*(14280) = 14270, *SS*(22680) = 22670, *SS*(28980) = 28970,

SS(1260) = 1249, SS(2520) = 2509, SS(2940) = 2929, SS(3360) = 3349, SS(4200) = 4189.

Some consequences of Lemma 3.2 are given below.

Lemma 3.3: There is an infinite number of primes p such that SS(420p) = 420p - 6.

Proof: Let *p* be the prime of the form p = 6s + 5, $s \ge 0$. By Lemma 2.5, there is an infinite number of primes of the prescribed form. With this *p*, by part (1) of Lemma 3.2, SS(420p) = 420p - 6.

Lemma 3.4: There is an infinite number of primes *p* such that SS(420p) = 420p - 8.

Proof: Let *p* be the prime of the form p = 8s + 1, $s \neq 3t + 2$, $t \ge 0$. With this *p*, by part (2) of

Lemma 3.2, SS(420p) = 420p - 6. Clearly, there is an infinite number of such primes.

Lemma 3.5: There is an infinite number of primes p such that SS(420p) = 420p - 9.

Proof: Let p be the prime of the form p = 9s + 4, $s \neq 8t + 5$, $t \ge 0$. Then, by part (3) of

Lemma 3.2, SS(420p) = 420p - 9. Note that there is an infinite number of such p.

The following results, involving the function SS(840m), are evident from Lemma 3.2.

Corollary 3.8: $SS(840m) \neq 840m - 6$ for any integer $m \ (\geq 1)$.

Corollary 3.9: $SS(840m) \neq 840m - 8$ for any integer $m \ (\geq 1)$.

Lemma 3.2 may be exploited to find the expressions of SS(840m), as is done below.

Corollary 3.10: Let $m \ge 1$ be an integer. Then,

- (1) SS(840m) = 840m 9, if m = 9s + 1, $s \ge 0$, or, if m = 9t + 2, $t \ge 0$,
- (2) SS(840m) = 840m 10, if m = 10s + 7, $s \neq 9u + 3$, $s \neq 9v + 4$, $u \ge 0$, $v \ge 0$,
- (3) SS(840m) = 840m 11, if 11 does not divide m and $m \neq 9a + 1$, $m \neq 9b + 2$, $m \neq 10c$
- $+7, a \ge 0, b \ge 0, c \ge 0.$

Proof: We may find *SS*(840*m*) by replacing *m* by 2*m* in *SS*(420*m*).

By part (3) of Lemma 3.2,

SS(840m) = 840m - 9 if 2m = 9s + 2, $s \ge 0$, or if 2m = 9t + 4, $t \ge 0$.

Now, the solution of the Diophantine equation 2m = 9s + 2 is m = 9x + 1, $x \ge 0$, while the equation 2m = 9t + 4 has the solution m = 9y + 2, $y \ge 0$.

Replacing m by 2m in part (4) of Lemma 3.2 and noting that only the first of the two conditions can hold true, one gets

SS(840m) = 840m - 10 if 2m = 2(10s + 7), $s \ge 0$.

Here, *s* is such that m = 10s + 7 does not assume the values given in part (1) of Corollary 3.9. Thus, the equations to be considered are 10s + 7 = 9x + 1 and 10s + 7 = 9y + 2, whose solutions are s = 9u + 3, $u \ge 0$ and s = 9v + 4, $v \ge 0$ respectively.

To prove part (3), consider the following expression for C(840m, 840m-11):

$$840m[\frac{(840m-1)(840m-2)(840m-3)(840m-4)(840m-5)(840m-6)(840m-7)(840m-8)(840m-9)(840m-10)}{2\times3\times4\times5\times6\times7\times8\times9\times10\times11}]$$

 $=840m[\frac{(840m-1)(420m-1)(280m-1)(210m-1)(168m-1)(140m-1)(120m-1)(105m-1)(280m-3)(84m-1)}{3\times11}].$

Now, since *m* is not divisible by 11, the numerator of the term inside the square bracket is divisible by 11; also, one of 280m - 1, 140m - 1, and 280m - 3 is divisible by 3. Thus, the term inside the square bracket is an integer.

The results in Corollary 3.10 match with those found by Islam *et al.* [4, Lemma 3.4 - Lemma 3.6] by following a different approach.

Part (5) of Lemma 3.2 suggests that the next function to be considered is SS(4620m). In this connection, the following results can be established using Lemma 3.2, noting that 4620m is 11 times 420m.

Lemma 3.6: Let $m \ge 1$ be an integer. Then,

- (1) SS(4620m) = 4620m 6, if m = 6s + 1, $s \ge 0$,
- (2) SS(4620m) = 4620m 8, if m = 8s + 3, $s \neq 3t + 2$, $t \ge 0$,
- (3) SS(4620m) = 4620m 9, if m = 9s + 1, s is odd, or, if m = 9t + 2, $t \neq 8b + 1$, $b \ge 0$,
- (4) SS(4620m) = 4620m 10, if m = 2(10s + 7), $s \neq 9u + 3$, $s \neq 9v + 7$, $u \ge 0$, $v \ge 0$, or if m = 20t + 19, $t \neq 2a$, $t \neq 3b$, $t \neq 9c + 5$, $a, b, c \ge 0$.

Proof: To prove part (1) of the lemma, note that, replacing *m* by 11m in part (1) of Lemma 3.2, the condition therein becomes 11m = 6a + 5, whose solution is m = 6s + 1, $s \ge 0$. Writing 11m in place of *m* in part (2) of Lemma 3.2, the condition therein takes the form 11m = 8b + 1, whose solution is m = 8s + 3, $s \ge 0$. In order to exclude the possibility of the values in part (1) of Lemma 3.6, the equation to be considered is $8s + 3 = 6\alpha + 1$, whose solution is s = 3t + 2, $t \ge 0$.

To prove part (3), let *m* in part (3) of Lemma 3.2 be replaced by 11m. Here, there are two possible cases. The first possibility is that $11m = 9\beta + 2$, whose solution is m = 9s + 1, $s \ge 0$. To find the restrictive conditions on *s*, one needs to consider the following two combined Diophantine equations:

9s + 1 = 6b + 1, 9s + 1 = 8c + 3.

The solutions of the above equations are s = 2d, $d \ge 0$ and s = 8e + 2, $e \ge 0$ respectively. Note that, if *s* is restricted to odd values, then $s \ne 8e + 2$ for any $e \ge 0$.

In the second case, the condition becomes $11m = 9\gamma + 4$, whose solution is m = 9t + 2, $t \ge 0$. In this case, noting that the Diophantine equation 9t + 2 = 6b + 1 has no solution, the restrictive condition on *t* is determined by the equation 9t + 2 = 8c + 3 only. This gives the solution t = 8z + 1, $z \ge 0$.

It now remains to prove part (4) of the lemma. Writing 11m for m in part (4) of Lemma 3.2, the two Diophantine equations therein become respectively

 $11m = 2(10\alpha + 7), 11m = 20\beta + 9,$

with respective solutions m = 2(10s + 7), $s \ge 0$ and m = 20t + 19, $t \ge 0$. With the first solution, the conditions on *s* are to be found that guarantee that *s* cannot take the values given in parts (1), (2) and (3) of Lemma 3.6. Since none of the combined Diophantine equations 2(10s + 7) = 6a + 1 and 2(10s + 7) = 8b + 3 has a solution, it is sufficient to consider the following two combined equations:

2(10s+7) = 9c+1, 2(10s+7) = 9d+2.

The solutions of the above equations are s = 9u + 7, $u \ge 0$ and s = 9v + 3, $v \ge 0$ respectively. With the second solution, four combined Diophantine equations are to be considered. They are

 $20t + 19 = 6\alpha + 1$, $20t + 19 = 8\beta + 3$, $20t + 19 = 9\gamma + 1$, $20t + 19 = 9\theta + 2$, with the respective solutions

 $t=3a, a \ge 0, t=2b, b \ge 0, t=9c, c \ge 0, t=9d+5, d \ge 0.$

Note that if *t* is not divisible by 3, then it is also not divisible by 9.

Using Lemma 3.6, the following values may be obtained.

SS(4620) = 4614, *SS*(32340) = 32334, *SS*(60060) = 60054, *SS*(87780) = 87774,

SS(13860) = 13852, *SS*(50820) = 50812, *SS*(124740) = 124732, *SS*(161700) = 161692,

SS(9240) = 9231, *SS*(92400) = 92391, *SS*(133980) = 133971, *SS*(175560) = 175551, *SS*(46200) = 46191, *SS*(129360) = 129351, *SS*(212520) = 212511,

SS(64680) = 64670, SS(157080) = 157070, SS(180180) = 180170, SS(249480) = 249470.

Consider the following expression for C(4620m, 4620m-11):

 $4620m[\frac{(4620m-1)(4620m-2)(4620m-3)(4620m-4)(4620m-5)(4620m-6)(4620m-7)(4620m-8)(4620m-9)(4620m-9)}{2\times3\times4\times5\times6\times7\times8\times9\times10\times11}]$ $= 4620m[\frac{(4620m-1)(2310m-1)(1540m-1)(1155m-1)(924m-1)(770m-1)(660m-1)(1155m-2)(1540m-3)(462m-1)}{1155m-1}].$

2×3×11

The above expression shows that $SS(4620m) \neq 4620m - 11$ for any integer $m \ge 1$. It may be mentioned here that this result also follows from Theorem 3.1.

Lemma 3.6 is supplemented by the following two results.

Lemma 3.7: SS(4620m) = 4620m - 12 if m = 6(12s + 5), $s \neq 5t + 2$, $t \ge 0$.

Proof: Consider the following expression for C(4620m, 4620m-12):

$$(4620m - 1)(2310m - 1)(1540m - 1)(1155m - 1)(924m - 1)(770m - 1)$$

$$(660m - 1)(1155m - 2)(1540m - 3)(462m - 1)(4620m - 11)$$

$$2 \times 3 \times 11 \times 12$$

$$(4620m - 1)(2310m - 1)(1540m - 1)(1155m - 1)(924m - 1)$$

= $4620m[\frac{(770m - 1)(660m - 1)(1155m - 2)(1540m - 3)(462m - 1)(420m - 1)}{2 \times 3 \times 12}]$

Now, the term inside the square bracket is an integer if 1155m - 2 is divisible by 8 and 1540m - 3 is divisible by 9. Thus, the following two Diophantine equations result : $1155m - 2 = 8\alpha$, $1540m - 3 = 9\beta$ for some integers $\alpha > 0$, $\beta > 0$.

The solutions of the above equations are m = 8u + 6, $u \ge 0$ and m = 9v + 3, $v \ge 0$ respectively. Now, considering the combined Diophantine equation 8u + 6 = 9v + 3, the solution is found to be u = 9s + 3, $s \ge 0$, so that m = 8(9s + 3) + 6 = 6(12s + 5). It now remains to find the condition(s) on *s* in order to exclude the common values shared by the values given in Lemma 3.6. Since none of the equations

6(12s+5) = 6a+1, 6(12s+5) = 8b+3, 6(12s+5) = 9c+1, 6(12s+5) = 9d+2, $6(12s+5) = 20\alpha+19$

has a solution, it is sufficient to consider the equation $6(12s + 5) = 2(10\beta + 7)$ only. Now, the solution of the equation is s = 5t + 2, $t \ge 0$.

Lemma 3.7 shows that, though SS(4620m) = 4620m - 12 for an infinite number of *m*, these values are distributed rather sparsely. The first few values, obtained from Lemma 3.7, are listed below.

SS(138600) = 138588, *SS*(471240) = 471228, *SS*(1136520) = 1136508.

Lemma 3.8: Let *m* be an integer not divisible by 13 such that $m \neq 6a + 1$, $m \neq 9b + 1$, $m \neq 9c + 2$, $m \neq 8d + 3$, $m \neq 2(10e + 7)$, $m \neq 20f + 19$, $m \neq 6(12g + 5)$; *a*, *b*, *c*, *d*, *e*, *f*, $g \ge 0$. Then, SS(4620m) = 4620m - 13.

Proof: Consider the following expression for C(4620m, 4620m-13):

$$(4620m - 1)(2310m - 1)(1540m - 1)(1155m - 1)(924m - 1)(770m - 1)$$

$$4620m[\frac{(660m - 1)(1155m - 2)(1540m - 3)(462m - 1)(420m - 1)(4620m - 12)}{2 \times 3 \times 12 \times 13}]$$

Now, consider the numerator of the term inside the square bracket. Since 13 does not divide *m*, the numerator is divisible by 13; also, one of 1155m - 1 and 1155m - 2 is even, and one of 1540m - 1, 770m - 1, and 1540m - 3 is divisible by 3. Thus, the term inside the square bracket is an integer.

Applying Lemma 3.8, the following values are obtained.

SS(18480) = 18467, SS(23100) = 23087, SS(27720) = 27707, SS(36960) = 36947.

The following results, involving SS(9240m), are evident from Lemma 3.6.

Corollary 3.11: $SS(9240m) \neq 9240m - 6$ for any integer $m (\geq 1)$.

Corollary 3.12: $SS(9240m) \neq 9240m - 8$ for any integer $m \ (\geq 1)$.

Lemma 3.6 – Lemma 3.8 may be employed to find SS(9240m), as is done below.

Corollary 3.13: Let $m \ge 1$ be an integer. Then,

(1) SS(9240m) = 9240m - 9, if m = 9s + 1, $s \ge 0$, or, if m = 9t + 5, $t \ge 0$,

- (2) SS(9240m) = 9240m 10, if m = 10s + 7, $s \neq 9u + 3$, $s \neq 9v + 7$, $u \ge 0$, $v \ge 0$,
- (3) SS(9240m) = 9240m 12, if m = 3(12s + 5), $s \neq 5x + 2$, $x \ge 0$,
- (4) SS(9240m) = 9240m 13, if 13 does not divide m and $m \neq 9a + 1$, $m \neq 9b + 5$,

 $m \neq 10c + 7, m \neq 3(12d + 5), a \ge 0, b \ge 0, c \ge 0, d \ge 0.$

Proof: The function SS(9240m) may be obtained from SS(4620m) by replacing *m* by 2m. Replacing *m* by 2m in part (3) of Lemma 3.6, one gets

SS(9240m) = 9240m - 9 if 2m = 9x + 2, $x \ge 0$, or if 2m = 9y + 1, $y \ge 0$.

Now, the solutions of the Diophantine equations are m = 9s + 1, $s \ge 0$ and m = 9t + 5, $t \ge 0$ respectively.

Replacing m by 2m in part (4) of Lemma 3.6, and noting that only the first of the two conditions can hold true, one gets

SS(9240m) = 9240m - 10 if 2m = 2(10s + 7), $s \ge 0$.

Thus, m = 10s + 7, where *s* is such that *m* does not assume the values given in part (1) of Corollary 3.13. To do so, the Diophantine equations to be considered are 10s + 7 = 9a + 1 and 10s + 7 = 9b + 5, whose solutions are s = 9u + 3, $u \ge 0$ and s = 9v + 7, $v \ge 0$ respectively. Now, replacing *m* by 2m in Lemma 3.7, one gets

SS(9240m) = 9240m - 12 if 2m = 6(12s + 5), $s \ge 0$.

Here, noting that none of the equations 3(12s + 5) = 9a + 1 and 3(12s + 5) = 9b + 5 possesses a solution, in order to find the restrictive condition on *s*, it is sufficient to consider the equation 3(12s+5) = 10c+7, whose solution is s = 5t+2, $t \ge 0$.

To prove part (4), consider the following expression for C(9240m, 9240m-13):

$$\begin{array}{r} (9240m-1)(9240m-2)(9240m-3)(9240m-4)(9240m-5)\\ (9240m-6)(9240m-7)(9240m-8)(9240m-9)(9240m-10)\\ \hline \\ 9240m[- \underbrace{ (9240m-11)(9240m-12)}_{2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12\times13}] \end{array}$$

Now, one of 3080m - 1, 1540m - 1, and 3080m - 3 is divisible by 3; moreover, one of the factors in the numerator of the term inside the square bracket is divisible by 13. Thus, the term inside the square bracket is an integer.

Using Corollary 3.13, the following values may be obtained.

SS(9240) = 9231, *SS*(46200) = 46191, *SS*(92400) = 92391, *SS*(129360) = 129351,

SS(64680) = 64670, SS(157080) = 157070, SS(2494800) = 249470, SS(434820) = 434270,

SS(138600) = 138588, *SS*(471240) = 471228, *SS*(1136520) = 1136508,

$$SS(18480) = 18467, SS(27720) = 27707, SS(36960) = 36947, SS(55440) = 55427.$$

Corollary 3.13 shows that

 $9240m - 9 \le SS(9240m) \le 9240m - 13$ for any integer $m \ge 1$,

with $SS(9240m) \neq 9240m - 11$ for any integer $m \ge 1$.

The final result of this section is the following.

Lemma 3.9: Let $m \ge 1$ be an integer. Then,

- (1) SS(60060m) = 60060m 6, if m = 6s + 1, $s \ge 0$,
- (2) SS(60060m) = 60060m 8, if m = 8s + 7, $s \neq 3a$, $a \ge 0$,
- (3) SS(60060m) = 60060m 9, if m = 9s + 5, $s \neq 8a + 2$, $a \ge 0$, or, if m = 9t + 7, $t \ge 1$ is odd,
- (4) SS(60060m) = 60060m-10, if m = 20s + 3, s is even, s ≠ 3a + 2, s ≠ 9b + 2, s ≠ 9c + 8, a ≥ 0, b ≥ 0, c ≥ 0, or if m = 2(10t + 9), t ≠ 9u + 7, t ≠ 9v + 8, u, v ≥ 0
- (5) SS(60060m) = 60060m 12, if m = 6(12s + 5), $s \neq 5a + 4$, $a \ge 0$.

Proof: To prove part (1), note that, replacing *m* by 13m in part (1) of Lemma 3.6, the condition therein becomes 13m = 6a + 1, whose solution is m = 6s + 1, $s \ge 0$.

Writing 13m in place of *m* in part (2) of Lemma 3.6, the condition therein takes the form 13m = 8b + 3, whose solution is m = 8s + 7, $s \ge 0$. Note that, the solution of the equation 8s + 7 = 6a + 1 is s = 3x, $x \ge 0$.

Next, let *m* in part (3) of Lemma 3.6 be replaced by 13*m*. Here, there are two possible cases. The first possibility is that $13m = 9\beta + 1$, whose solution is m = 9t + 7, $t \ge 0$. Here, one needs to consider the following two combined Diophantine equations:

9t + 7 = 6a + 1, 9t + 7 = 8c + 7.

The solutions of the above equations are s = 2d, $d \ge 0$ and s = 8e, $e \ge 0$ respectively.

The second possibility is that $13m = 9\gamma + 2$, whose solution is m = 9s + 5, $s \ge 0$. Here, the Diophantine equation 9s + 5 = 6a + 1 has no solution (by Lemma 2.4), while the solution of the equation 9s + 5 = 8c + 7 is s = 8y + 2, $y \ge 0$.

To prove part (4) of the lemma, replacing m by 13m for m in part (4) of Lemma 3.6, the two Diophantine equations therein become respectively

 $13m = 2(10\alpha + 7), 13m = 20\beta + 19,$

with respective solutions m = 2(10t + 9), $t \ge 0$ and m = 20s + 3, $s \ge 0$. Now, none of the combined Diophantine equations 2(10t + 9) = 6a + 1 and 2(10t + 9) = 8c + 7 has a solution, while the solutions of the following two combined equations

2(10t+9) = 9d+5, 2(10t+9) = 9e+7,

are t = 9u + 7, $u \ge 0$ and t = 9v + 8, $v \ge 0$ respectively. With the second solution m = 20s + 3, the following four equations are to be considered:

20s + 3 = 6a + 1, 20s + 3 = 8c + 7, 20s + 3 = 9d + 5, 20s + 3 = 9e + 7, whose solutions are respectively

 $s = 3a + 2, a \ge 0, s = 2b + 1, b \ge 0, s = 9c + 8, c \ge 0, s = 9d + 2, d \ge 0.$

To prove part (5) of the lemma, replacing *m* by 13m in Lemma 3.7, the condition therein becomes 13m = 6(12a + 5), whose solution is m = 6(12s + 5). Here, the Diophantine equations to be considered are

6(20s+5) = 6a+1, 6(20s+5) = 8c+7, 6(20s+5) = 9d+5, 6(20s+5) = 9e+7,

6(20s+5) = 20f+3, 6(20s+5) = 2(10g+9).

The solution of the last equation is s = 5t + 4, $t \ge 0$, while none of the remaining equations possesses a solution.

Using Lemma 3.6, the following values may be obtained.

SS(60060) = 60054, SS(420420) = 420414, SS(780780) = 780774, SS(1141140) = 1141134,

SS(900900) = 9008922, *SS*(1381380) = 1381372, *SS*(2342340) = 2342332,

SS(30030) = 300291, *SS*(840840) = 840831, *SS*(960960) = 960951,

SS(180180) = 180170, *SS*(1081080) = 1081070, *SS*(2282280) = 2282270,

SS(1801800) = 1801788, *SS*(6126120) = 6126108, *SS*(10450440) = 10450428.

Note that $SS(60060m) \neq 60060m - 13$ for any integer $m (\geq 1)$.

4. Some Remarks

This section derives some interesting results involving the function SS(n).

Lemma 4.1: Let the equation

 $SS(n+1) = SS(n) + m \tag{4.1}$

have a solution for some (positive) integers n and m. Then, with this m, the equation

SS(n+1) = SS(n) - m + 2 (4.2)

has also a solution.

Proof: Let, for some integer m (>0) fixed, n_0 be a solution of the equation (4.1). Then, n_0 must be even, for otherwise, n_0 is odd, so that

 $SS(n_0+1) \le n_0-2$, $SS(n_0) = n_0-2$,

violating the equation (4.1). Hence, n_0 must be even with

 $SS(n_0+1) = n_0-1$, $SS(n_0) = n_0-m-1$.

Now, $SS(n_0 - 1) = n_0 - 3$, so that

 $SS(n_0) - SS(n_0 - 1) = 2 - m,$

which shows that $n = n_0 - 1$ is a solution of the equation (4.2).

Lemma 4.2: The equation

SS(n+1) = SS(n) - 1 (4.3)

has an infinite number of solutions.

Proof: Let N = 24m + 18, $m \ge 0$ being any integer. Then, by Lemma 1.3, SS(N) = N-4, and by Lemma 1.1, SS(N+1) = N-1, so that N = 24m + 18 is a solution of the equation SS(n + 1) = SS(n) + 3. Therefore, by Lemma 4.1, n = 24m + 17, $m \ge 0$, is a solution of the equation (4.3). Since there is an infinite number of such *n*, the lemma is proved.

Lemma 4.3: The equation

$$SS(n+1) = SS(n) - 2$$
(4.4)

has an infinite number of solutions.

Proof: Letting N = 12m ($m \ge 0$ being an integer not divisible by 5), by Theorem 3.3, SS(N) = N - 5. Since SS(N + 1) = N - 1, such an *N* is a solution of the equation SS(n + 1) = SS(n) + 4. Then, by Lemma 4.1, n = 12m - 1 ($m \ge 0$ being an integer not divisible by 5) is a solution of the equation (4.4). Clearly, there is an infinite number of such *n*.

A second solution of the equation (4.4) is given as follows: Let n = 24m + 12 with $m \neq 5s + 2$, $s \ge 0$ being an integer. By part (3) of Lemma 3.3, SS(n) = n - 5, so that SS(n + 1) = SS(n) + 5. Therefore, by Lemma 4.1, n = 24m + 11, $m \neq 5s + 2$, $s \ge 0$, is a solution of the equation (4.4). Note that there is an infinite number of solutions of (4.5).

Lemma 4.4: The equation

SS(n+1) = SS(n) - 3 (4.5)

has an infinite number of solutions.

Proof: Let N = 60m, m = 6s + 5, $s \ge 0$. By (3.6), SS(N) = N - 6. Thus, SS(N + 1) = SS(N) + 5. Therefore, by Lemma 4.1, n = 60m - 1, m = 6s + 5, $s \ge 0$, is a solution of the equation (4.5). Clearly, there is an infinite number of solutions of (4.5).

Lemma 4.5: The equation

SS(n+1) = SS(n) - 4

has an infinite number of solutions.

Proof: Let N = 12m + 6, m = 2(5s + 1) (for any integer $s \ge 0$). By part (6b) of Corollary 3.4, SS(N) = N - 7, so that SS(N + 1) = SS(N) + 6. Then, by Lemma 4.1, n = 12m + 5, m = 2(5s + 1), $(s \ge 0)$ is a solution of the equation (4.6).

(4.6)

5. Conclusion

This paper studies a newly introduced Smarandache-type arithmetic funcation called Sandor-Smarandache function, SS(n). Recently, a set of necessary and sufficient conditions has been derived such that SS(n) = n - 4. This study finds the necessary and sufficient conditions for SS(n) = n - 5 and SS(n) = n - 6. Theorem 3.3 involves the function SS(12m). Then, the paper derives the expressions of SS(60m), SS(420m), SS(4620m), SS(60060m) and their values are appended here successively. The analysis so far reveals the following facts about the function SS(n) = n - 5.

- (1) SS(n) = n-5, if n = 12m ($m \ge 1$) and 5 does not divide n,
- (2) $n-6 \le SS(n) \le n-7$, if n = 60m ($m \ge 1$) and 7 does not divide n,
- (3) $n-6 \le SS(n) \le n-11$, if n = 420m ($m \ge 1$) and 11 does not divide n,

(4) $n-6 \le SS(n) \le n-13$, if n = 4620m ($m \ge 1$) and 13 does not divide n.

It thus appears that SS(n) depends, to some extent, on the prime factors of *n* in their sequential order 2, 3, 5, However, if *p* is the largest prime factor of *n*, then $SS(n) \neq n-p$. It may open a new research horizon regarding Sandor-Smarandache function.

References

- 1. J. Sandor, Smarandache Notions J. 12, 247 (2001).
- 2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th Edition (Oxford University Press, U. K. 2002).
- 3. S. M. S. Islam, H. Gunarto, and A. A. K. Majumdar, J. Sci. Res. **13**, 439 (2021). <u>https://doi.org/10.3329/jsr.v13i2.49965</u>
- 4. S. M. S. Islam and A. A. K. Majumdar, J. Sci. Res. 14, 45 (2022). https://doi.org/10.3329/jsr.v14i1.52946
- 5. A. A. K. Majumdar, GANIT: J. Bangladesh Math. Soc. **39**, 15 (2019). https://doi.org/10.3329/ganit.v39i0.44161
- S. M. S. Islam and A. A. K. Majumdar, J. Sci. Res. 13, 73 (2021). https://doi.org/10.3329/jsr.v13i1.47721
- A. A. K. Majumdar and A. K. Z. Ahmed, J. Bangladesh Acad. Sci. 45, 255 (2021). https://doi.org/10.3329/jbas.v45i2.57320
- C. D. Olds, A. Lax, and G. Davidoff, The Geometry of Numbers (The Mathematical Association of America, USA, 2000). <u>https://doi.org/10.5948/UPO9780883859551</u>
- 9. A. A. Gioia, The Theory of Numbers (Dover Publications Inc., N.Y., 2001).
- 10. A. A. K. Majumdar, Smarandache Numbers Revisited (Pons Publishing House, Belgium 2018).

Appendices

п	SS(n)	п	SS(n)	п	SS(n)	п	SS(n)	п	SS(n)
60	53	2460	2454	4860	4853	7260	7253	9660	9654
120	113	2520	2509	4920	4913	7320	7313	9720	9713
180	173	2580	2573	4980	4974	7380	7373	9780	<i>9773</i>
240	233	2640	2633	5040	5029	7440	7433	9840	98 <i>33</i>
300	294	2700	2693	5100	5093	7500	7494	9900	9893
360	353	2760	2753	5160	5153	7560	7549	9960	9953
420	412	2820	2814	5220	5213	7620	7613	10020	10014
480	473	2880	2873	5280	5273	7680	7673	10080	10069
540	533	2940	2929	5340	5334	7740	7733	10140	10133
600	<i>593</i>	3000	2993	5400	5393	7800	7793	10200	10193
660	654	3060	3053	5460	5451	7860	7854	10260	10253
720	713	3120	3113	5520	5513	7920	7913	10320	10313
780	773	3180	3174	5580	5573	7980	7969	10380	10374
840	831	3240	3233	5640	5633	8040	8033	10440	10433
900	893	3300	3293	5700	5694	8100	8093	10500	10492
960	<i>953</i>	3360	3349	5760	5753	8160	8153	10560	10553
1020	1014	3420	3413	5820	5813	8220	8214	10620	10613
1080	1073	3480	3473	5880	5870	8280	8273	10680	10673
1140	1133	3540	3534	5940	<i>5933</i>	8340	8333	10740	10734
1200	1193	3600	3593	6000	<i>5993</i>	8400	8391	10800	10793
1260	1249	3660	3653	6060	6054	8460	8453	10860	10853
1320	1313	3720	3713	6120	6113	8520	8513	10920	10909
1380	1374	3780	3772	6180	6173	8580	8574	10980	10973
1440	1433	3840	3833	6240	6233	8640	8633	11040	11033
1500	1493	3900	3894	6300	6289	8700	8693	11100	11094
1560	1553	3960	3953	6360	6353	8760	8753	11160	11153
1620	1613	4020	4013	6420	6414	8820	8809	11220	11213
1680	1671	4080	4073	6480	6473	8880	887 <i>3</i>	11280	11273
1740	1734	4140	4133	6540	6533	8940	8934	11340	11329
1800	1793	4200	4189	6600	6593	9000	<i>8993</i>	11400	11393
1860	1853	4260	4254	6660	6653	9060	9053	11460	11454
1920	1913	4320	4313	6720	6709	9120	9113	11520	11513
1980	1973	4380	4373	6780	6774	9180	9173	11580	11573
2040	2033	4440	4433	6840	6833	9240	9231	11640	11633
2100	2094	4500	4493	6900	6893	9300	9294	11700	11693
2160	2153	4560	4553	6960	6953	9360	9353	11760	11749
2220	2213	4620	4614	7020	7013	9420	9413	11820	11814
2280	2273	4680	4673	7080	7073	9480	9473	11880	11873
2340	2333	4740	4733	7140	7134	9540	9533	11940	11933
2400	2393	4800	4793	7200	7193	9600	9593	12000	11993

Table A-1. Values of SS(60m), $1 \le m \le 200$.

п	SS(n)	п	SS(n)	п	SS(n)	n	SS(n)	п	SS(n)
420	412	17220	17214	34020	34012	50820	50812	67620	67614
840	831	17640	17629	34440	34429	51240	51229	68040	68029
1260	1249	18060	18049	34860	34854	51660	51649	68460	68449
1680	1671	18480	18467	35280	35269	52080	52069	68880	68871
2100	2094	18900	18889	35700	35691	52500	52494	69300	69287
2520	2509	19320	19309	36120	36109	52920	52909	69720	69711
2940	2929	19740	19734	36540	36529	53340	53329	70140	70134
3360	3349	20160	20149	36960	36947	53760	53751	70560	70549
3780	3772	20580	20572	37380	37374	54180	54172	70980	70972
4200	4189	21000	20989	37800	37789	54600	54591	71400	71389
4620	4614	21420	21409	38220	38209	55020	55014	71820	71809
5040	5029	21840	21829	38640	38631	55440	55427	72240	72229
5460	5451	22260	22254	39060	39049	55860	55849	72660	72654
5880	5870	22680	22670	39480	39471	56280	56270	73080	73070
6300	6289	23100	23087	39900	39894	56700	56689	73500	73491
6720	6709	23520	23511	40320	40309	57120	57109	73920	73907
7140	7134	23940	23932	40740	40732	57540	57534	74340	74332
7560	7549	24360	24351	41160	41149	57960	57949	74760	74749
7980	7969	24780	24774	41580	41567	58380	58371	75180	75174
8400	8391	25200	25189	42000	41989	58800	58789	75600	75589
8820	8809	25620	25609	42420	42414	59220	59209	76020	76009
9240	9231	26040	26029	42840	42829	59640	59629	76440	76431
9660	9654	26460	26449	43260	43251	60060	60054	76860	76849
10080	10069	26880	26869	43680	43669	60480	60469	77280	77271
10500	10492	27300	27294	44100	44092	60900	60892	77700	77694
10920	10909	27720	27707	44520	44509	61320	61311	78120	78109
11340	11329	28140	28131	44940	44934	61740	61729	78540	78527
11760	11749	28560	28549	45360	45349	62160	62151	78960	78949
12180	12174	28980	28970	45780	45770	62580	62574	79380	79370
12600	12589	29400	29389	46200	46191	63000	62989	79800	79789
13020	13011	29820	29814	46620	46609	63420	63409	80220	80214
13440	13429	30240	30229	47040	47031	63840	63829	80640	80629
13860	13852	30660	30652	47460	47454	64260	64252	81060	81052
14280	14270	31080	31071	47880	47870	64680	64670	81480	81470
14700	14694	31500	31489	48300	48289	65100	65094	81900	81889
15120	15109	31920	31911	48720	48709	65520	65509	82320	82309
15540	15529	32340	32334	49140	49129	65940	65931	82740	82734
15960	15951	32760	32749	49560	49549	66360	66349	83160	83147
16380	16369	33180	33169	49980	49974	66780	66769	83580	83569
16800	16791	33600	33589	50400	50389	67200	67189	84000	83991

Table A-2. Values of SS(420m), $1 \le m \le 200$.

п	SS(n)	п	SS(n)	п	SS(n)	п	SS(n)
4620	4614	189420	189407	374220	374207	559020	559014
9240	9231	194040	194027	378840	378831	563640	563627
13860	13852	198660	198654	383460	383452	568260	568252
18480	18467	203280	203267	388080	388067	572880	572867
23100	23087	207900	207887	392700	392694	577500	577487
27720	27707	212520	212511	397320	397307	582120	582107
32340	32334	217140	217131	401940	401927	586740	586734
36960	36947	221760	221747	406560	406547	591360	591351
41580	41567	226380	226374	411180	411167	595980	595967
46200	46191	231000	230987	415800	415787	600600	600586
50820	50812	235620	235612	420420	420414	605220	605212
55440	55427	240240	240223	425040	425031	609840	609827
60060	60054	244860	244847	429660	429647	614460	614454
64680	64670	249480	249470	434280	434270	619080	619070
69300	69287	254100	254094	438900	438887	623700	623687
73920	73907	258720	258711	443520	443507	628320	628311
78540	78527	263340	263327	448140	448134	632940	632931
83160	83147	267960	267947	452760	452747	637560	637547
87780	87774	272580	272572	457380	457372	642180	642174
92400	92391	277200	277187	462000	461991	646800	646787
97020	97007	281820	281814	466620	466611	651420	651407
101640	101627	286440	286427	471240	471228	656040	656027
106260	106247	291060	291047	475860	475854	660660	660643
110880	110867	295680	295671	480480	480463	665280	665267
115500	115494	300300	300291	485100	485087	669900	669894
120120	120103	304920	304907	489720	489707	674520	674511
124740	124732	309540	309534	494340	494332	679140	679132
129360	129351	314160	314147	498960	498947	683760	683747
133980	133971	318780	318767	503580	503574	688380	688367
138600	138588	323400	323387	508200	508191	693000	692987
143220	143214	328020	328007	512820	512807	697620	697614
147840	147827	332640	332627	517440	517427	702240	702227
152460	152447	337260	337254	522060	522047	706860	706847
157080	157070	341880	341871	526680	526670	711480	711471
161700	161692	346500	346492	531300	531294	716100	716092
166320	166307	351120	351107	535920	535907	720720	720703
170940	170934	355740	355727	540540	540523	725340	725334
175560	175551	360360	360343	545160	545151	729960	729947
180180	180170	364980	364974	549780	549771	734580	734570
184800	184787	369600	369587	554400	554387	739200	739187

Table A-3. Values of SS(4620m), $1 \le m \le 160$.

n	SS(n)	n	SS(n)	n	SS(n)
60060	60054	2462460	2462451	4864860	4864843
120120	120103	2522520	2522503	4924920	4924903
180180	180170	2582580	2582574	4984980	4984970
240240	240223	2642640	2642623	5045040	5045023
300300	300291	2702700	2702686	5105100	5105094
360360	360343	2762760	2762745	5165160	5165151
420420	420414	2822820	2822812	5225220	5225212
480480	480463	2882880	2882865	5285280	5285271
540540	540523	2942940	2942934	5345340	5345323
600600	600586	3003000	3002991	5405400	5405383
660660	660643	3063060	3063041	5465460	5465454
720720	720703	3123120	3123111	5525520	5525503
780780	780774	3183180	3183164	5585580	5585565
840840	840831	3243240	3243223	5645640	5645626
900900	900892	3303300	3303294	5705700	5705692
960960	960951	3363360	3363343	5765760	5765743
1021020	1021006	3423420	3423403	5825820	5825814
1081080	1081070	3483480	3483470	5885880	5885870
1141140	1141134	3543540	3543531	5945940	5945923
1201200	1201183	3603600	3603583	6006000	6005983
1261260	1261245	3663660	3663654	6066060	6066046
1321320	1321303	3723720	3723703	6126120	6126108
1381380	1381372	3783780	3783772	6186180	6186174
1441440	1441423	3843840	3843823	6246240	6246231
1501500	1501494	3903900	3903883	6306300	6306283
1561560	1561543	3963960	3963946	6366360	6366351
1621620	1621603	4024020	4024014	6426420	6426403
1681680	1681665	4084080	4084071	6486480	6486463
1741740	1741723	4144140	4144124	6546540	6546534
1801800	1801788	4204200	4204191	6606600	6606584
1861860	1861854	4264260	4264252	6666660	6666652
1921920	1921911	4324320	4324303	6726720	6726703
1981980	1981963	4384380	4384374	6786780	6786771
2042040	2042031	444440	4444423	6846840	6846823
2102100	2102083	4504500	4504483	6906900	6906894
2162160	2162143	4564560	4564545	6966960	6966943
2222220	2222214	4624620	4624611	7027020	7027004
2282280	2282270	4684680	4684670	7087080	7087070
2342340	2342332	4744740	4744734	7147140	7147132
2402400	2402383	4804800	4804783	7207200	7207183

Table A-4. Values of SS(60060m), $1 \le m \le 120$.