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Abstract 

This paper deals with a mathematical model that represents non-Newtonian bile flow 

through a calculus duct under the influence of heat transfer with wall slip conditions. The 

peristaltic flow of bile is characterized by a generalized Carreau's model. An ordinate 

transformation is initiated to map the cosine geometry of the stone into a rectangular grid. It 

allows evaluation velocity, pressure distribution, flow rate, and reflux occurrence 

conditions, adopting the perturbation technique, the analytical solution obtained under 

various parameters, such as Knudsen number, amplitude ratio, Grashof number, 

Weissenberg number, and power index. These mathematical expressions are analyzed by 

plotting the graph in MATLAB R2018b software and observed that the axial velocity and 

the pressure gradient are strongly affected by heat and wall slip parameters. 
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1.   Introduction 

The most common disease of the biliary system is cholelithiasis, which is associated with 

the formation of stones in the gallbladder and bile ducts. The formation of stone in the 

biliary system is complicated due to physiological, biochemical, and biomechanical 

factors such as an unsystematic diet, metabolism, gallbladder dysfunction, etc. Suppose 

the diameter of the stenosis is less than the diameter of the cystic duct, then calculus 

moves from the gallbladder to the common bile duct. The presence of stones in the biliary 

system is a very complicated situation; there is a blockage of the duct by a stone in the 

major duodenal papilla zone. As a result, the normal bile flow from the liver to the 

duodenum raises the jaundice risk. Also, the bile components like cholesterol, bile acids, 

etc., are harmful to humans are accumulated in the human body. Edemskiy et al. [1] 

analyzed Vater's papilla's acute and chronic inflammatory changes. Agarwal et al. [2] 

studied the effects of flow parameters in the diseased cystic duct and analyzed the 

blockage effect on bile flow. 
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Transportation of physiological fluids induced by a progressive wave of area 

contraction or expansion along the length of a distensible tube, mixing and transporting 

the fluid in the direction of propagation is known as peristalsis. The peristaltic flow of 

many physiological fluids are flow of urine from the kidney to the bladder through the 

ureter, movement of food through the food tract, the flow of ovum in the female fallopian 

tube, transport of spermatozoa and swallowing food through the esophagus, flow of bile 

from gallbladder to pancreatic duct. Many researchers studied the peristaltic motion of 

fluid for different geometries by using various assumptions such as low Reynolds number, 

long-wavelength, small amplitude ratio, small Darcy number, creeping flow, etc. Mishra 

et al. [3] developed a mathematical model for peristaltic flow of bile within the porous 

pathological duct, and the effect of various flow parameters is investigated in detail. 

Computed results are compared with previously existing analytical results. Kuchumov et 

al. [4] investigated the peristaltic flow of bile through a papilla ampoule with stone and 

papillary stenosis by considering two cases when the flow rate becomes less than zero 

pressure were computed and explained pressure rise magnitude corresponding to reflux 

occurring conditions. Srinivas et al. [5] studied the peristaltic flow of Jeffrey fluid through 

the inclined asymmetric channel and analyzed the effect of slip condition on flow 

characteristics and pressure drop. Khan et al. [6] investigated the peristaltic transport of 

non-Newtonian fluid in a porous medium in an inclined channel under the influence of 

variable viscosity and slip conditions. Kuchumov [7] formed a mathematical model of 

peristaltic lithogenic bile flow through the tapered duct with papillary stenosis and 

revealed that the amplitude ratio has more effect on the pressure distribution than the 

Weissenberg number. Maheshbabu et al. [8] studied the hall effects on Carreau's fluid in 

an asymmetric channel and found the pumping of carreau fluid than that of Newtonian 

fluid and observed that pressure gradient increases with increasing Hartman number. 

Mahmood et al. [9] developed a mathematical model to see lubrication effects on the 

peristaltic transport of couple stress fluid in an asymmetric channel. It is found that 

pressure rise increases on increasing lubrication effects. Goud et al. [10] discussed the 

peristaltic movement of Ellis fluid in a vertical uniform channel with wall properties and 

slip conditions. Pandey et al. [11] investigate the transport of a viscoelastic fluid by 

peristaltic motion in a circular cylinder tube by considering the Jeffery fluid model, low 

Reynolds number, large wavelength approximation, and the wave equation assumed to 

propagates along the wall. They also observed that the pressure decreases as the ratio of 

relaxation time increases, and the average flow rate is less than the maximum flow rate. 

Tripathi et al. [12] developed a biofluid dynamics mathematical model to study the 

peristaltic viscoelastic biofluid flow through the asymmetric porous channel by 

considering low Reynolds number and large wavelength ratio approximation. This 

mathematical model is related to flow in the diseased intestine. Kumari et al. [13] 

analyzed the effect of nonlinear variable viscosity of the bile with slip boundary condition 

by considering the peristaltic transport of bile in an inclined channel under low Reynolds 

number and long-wavelength approximation and concluded that velocity and pressure is 

more in case of linear variation of viscosity as compare to nonlinear variation of viscosity.  
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Bile is a greenish-yellow bio-fluid produced by hepatocyte cells of the liver; it contains 

many biochemical substances like cholesterol, bile acids, bile salts, phospholipids 

pigments (bilirubin and biliverdin), a small amount of copper electrolytic chemical, and 

other excreted metals. In adults, about one-liter bile is produced in a day. The biliary 

system consists of the liver, gallbladder, and biliary ducts (left and right hepatic duct, 

common hepatic duct, cystic duct, common bile duct, and pancreatic duct). These biliary 

ducts refer to the path by which bile is secreted by the liver and then transported to the 

duodenum. After passing through several bile ducts, bile is stored and concentrated in the 

gallbladder; when any food intake, bile is secreted through a cystic duct from the 

gallbladder to the duodenum through the common bile duct. Bile accelerates the fat 

absorption process and plays an important role in the absorption of the vitamins like A, D, 

E, and K. Ooi et al. [14] numerically studied the flow of bile in two- and three-

dimensional cystic duct models. In the cystic duct model, data was recorded from 

different patients, and the pressure drops in these models were compared with an idealized 

straight duct with regular baffles. Kuchumov et al. [15] developed an analytical model of 

the pathological bile flow in the major duodenal papilla duct with calculus. They showed 

that pathological bile is a thixotropic non-Newtonian fluid. Kuchumov et al. [16] 

experimentally studied the non-Newtonian flow of pathological bile in the biliary system 

and analyzed the flow characteristic during the gallbladder refilling and emptying 

condition. This paper deals with mathematical modeling of lithogenic bile flow through 

calculus duct to obtain hole dynamics flow characteristics of bile under the influence of 

heat transfer with wall slip condition, which may be helpful in surgery of calculus duct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Biliary system with gallstone [2]. 
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Consider the peristaltic flow of an incompressible and non-Newtonian (Carreau's 

fluid) bile through a calculus (stone) duct with sinusoidal waves of constant speed which 

propagates along the duct boundaries. The wavenumber δ is infinitely small, and the 

Reynolds number Re is negligible. 

The constitutive relation for the non-Newtonian fluid flow is described in Carreau's 

equation [7]. 

   ̅̅̅̅       +   ̅̅ ̅ (1) 

   ̅̅ ̅ = *   (     )(  ((  ̅̇) )
   

 )+  ̅̇   (2) 

Where p is the pressure,     is Kronecker delta,     is the extra stress tensor,    and    are 

the zero and infinite shear rate viscosity, respectively,    is the time constant, m is the 

power index.  

The shear rate  ̅̇ is defined as follows: 

 ̅̇ = √
 

 
∑∑  ̅̇   ̅̇   = √

 

 
  (3) 

Where   is the second invariant strain rate tensor. In case of    on applying Taylor's 

expansion, equation (2) takes the form: 

 ̅     *   
   

 
(( ̇) )+  ̅̇   (4) 

 

 

 

Nomenclature 

  ( ̅  ̅)    cartesian coordinates                                                     

  ( ̅  ̅)    velocity components along  ̅and  ̅ direction       

               wave speed                                                                    

    ̅           fluid pressure                                                                 

   g           acceleration due to gravity                                            

              specific heat at constant pressure                                

              constant heat addition/absorption                                 

              Reynolds number                                                          

              Prandtl number  

             Grashof number 

              Knudsen number 

               temperature at the upper wall 

               temperature at the lower wall  

Greek symbols 

   λ           wave length 

               thermal slip parameter 

               density of bile 

               non dimensional temperature 

               wave number 

               heat source/sink parameter 
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Fig. 2. Geometry of calculus duct. 

 

The effective radius of the duct: 

  ̅( ̅  ̅) ={
*   

 

 
*     ,

 ( ̅   )

  
-+    ( ̅)+               

    ( ̅)                                                                            
 (5) 

Where   ̅( ̅  ̅) is the radius of the duct segment in the constricted region,   the 

unconstructed radius of the calculus duct,    the half-length,   the maximum width and 

  the center of the calculus with    =0.276  . The time-variant parameter,   ( ) is given 

by [17]. 

  ( ̅)         (    )  

Where    represent the amplitude parameter and   the phase angle. 

The geometry of the peristaltic wall surface is defined as [17] 
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Fig. 3. Schematic diagram of the duct with stone. 

 

The equations of motion are 
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  ̅
   (7) 
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Where  is the density,  ̅      ̅ are the velocity components,  ̅ is the pressure of the bile. 

The flow is unsteady in the laboratory frame ( ̅  ̅). However, in a coordinate system 

( ̅  ̅)(wave frame) moving with the propagation velocity c, and the boundary shape is 

stationary.  

The transformation from fixed frame to wave frame is given by   

 ̅   ̅          ̅   ̅,    ̅    ̅           ̅     ̅     ̅       ̅ (11) 

Where ( ̅  ̅) and ( ̅  ̅) are velocity components in the wave and fixed frames, 

respectively.  

Let us introduce the non-dimensional variables.  
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Using (12), equations (5), (6), (7), (8), (9), and (10) are converted into 
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Where                 are the non-dimensional parameter, called the wavenumber, 

Reynolds number, Grashof number, Prandtl number, source/sink parameter, and Knudsen 

number, respectively, and are defined as 

   
  

  
,    

       

   
,    

    

 
,   

   
 

   
,    

 

 
 (19) 

The equation which governs the flow in terms of the stream function  (   ) after 

eliminating pressure gradient from equations (16) and (17) we get 
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Where; 

u = 
  

  
      

  

  
 (21) 

Equations (16) and (17) for pressure gradient becomes 
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2. Volumetric Flow Rate and Boundary Conditions 

 

The dimensionless fluid flow in the fixed frame is 

  ∫  ̅( ̅  ̅  )  ̅
 ̅( ̅  )

 
 (24) 

and equation (24) with wave frame becomes 

  ∫  ̅( ̅  ̅)  ̅
 ̅( ̅)

 
  (25) 

Using equations (11), (24) and (25) we can write 

Q = q +
 ̅ 

 
 (26) 

The time-mean flow over a period T at a fixed position X is given  

 ̅  
 

 
∫  
 

 
   (27) 

The above expression after using equation (26), becomes 

 ̅       (28) 

dimensionless time-mean flow         in the fixed frame and wave frame are 

 ̅  
 ̅

  
 ,     

 

  
 (29) 

Using  equations (28) and (29), we get 
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   ∫
  

  

 

 
    ( )   ( )  (31) 

The boundary conditions for the dimensionless stream function in the wave frame are 
  

  
               0                   (32) 

                ( ) (33) 

                 (by convention) (34)  

   

   
             (by symmetry)  (35) 
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        ( )  (wall slip condition)  (36) 

  
  

 
       ( )   (37) 

       

 ( )     ( )    ( ) (Combined the equation of effective radius of the duct and 

peristaltic wall surface) 

 

3. An Approximate Solution of the Problem 

 

Considering long-wavelength (    ) and low Reynolds number the equations (18), (20), 

(21), (22), and (23) becomes, 
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Solving equation (42) using the boundary conditions (32) and (33), we get  

  
 

 
(     ) (43) 

The perturbation technique mainly depends on the small parameter of Carreau's 

fluid (   ). To solve the nonlinear system of equations (39) and (40) for appropriate 

boundary conditions as given by equation (34) - (37) as: 

u =           (   )    

            (   )   (44)  

              (   )   (45) 

                (   )   (46) 

Where      ,    and    is the zeroth-order quantities and      ,   and     is the first-

order quantities Substituting equations (39) and (40) in equations for boundary conditions 

(34) - (37) and collecting the like power of    , we obtain zeroth and first-order systems 

of partial differential equations with corresponding boundary conditions. 

 

3.1. Zeroth order system  

 

In zero order system, the absence of Weissenberg number     is taken, the zero-order 

system without any non-Newtonian parameter is as follows: 
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3.2. The first-order system 

 

The zero-order solutions obtained from the zero-order system will be combined with the 

first-order system to obtain a non-homogeneous set of linear partial differential equations. 
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         (wall slip condition)  (57) 
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On solving the equations (47), (48), and equations (53), (54) and their respective 

boundary conditions, we obtain the solution of stream function, axial velocity, and 

pressure gradient of zeroth and first-order system, respectively. 

 

3.2.1. Zero-order system solution 

 

            
  

 
   

  

 
 

     

   
  

            
  

 
 

     

  
  

   

  
     

 

3.2.2. First-order system solution 
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3.2.3. The solution satisfying the corresponding boundary condition 
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The non-dimensional expression for the pressure rise at the wall in the length of duct L is 

given by 
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4. Results and Discussion 

 

Figs. 4-9 illustrate the behavior of the axial velocity profile of the flowing bile in the 

presence of stone characterized by Carreau's fluid model at a particular instant of time for 

different values of Grashof number   , Knudsen number   , source-sink parameter  , 

power index m and amplitude ratio  . 

 In Fig. 4 two cases are considered, (i)     , (when the duct wall is in cooling 

condition) as    increases axial velocity decreases. Whereas in case (ii) when      

(when the duct wall is in heating condition), reverse style of axial velocity is noticed. This 

trend is observed at x= 0.5 at certain points of the duct. As bile contacts with stone, the 

bile velocity is more in case of cooling condition and noticed that the velocity of bile is 

decreased in stenosed region    (        ) and also observed maximum decay at      . 

In a comparison of heating and cooling conditions, the axial velocity is more in the case of 

the cooling condition. 

 Fig. 5 describes the impact of wall slip parameter    on the axial velocity with axial 

distance, this shows that the axial velocity decreases as increases slip parameter and also 

observed that the velocity decreases more in the region   (        ) this region 

represents the obstacle region or calculus region, it produces resistance to flow the bile in 

a duct. 

 Fig. 6 shows the different values of power index  , it is observed that    velocity 

quickly decreases, which means for highly viscous bile velocity is decreases more as 

compared with low viscous bile due to obstacle. It is also observed that the value of the 

axial velocity is greater than those in case of shear-thinning behavior     and also for 

shear-thinning     and observed that the velocity curve in the axial distance shows 

valley in   (        ) region this region represents calculus part of the duct. 

 From Fig. 7 it is noticed that axial velocity decreases as the amplitude ratio increases. 

A high amplitude ratio leads to a decreased cross-section during bolus propagation, so the 

axial velocity decreases at high amplitude wave and observed that minimum velocity in 

stenosed region   (        ). 

 Fig. 8 shows the variation of axial velocity with axial distance for different 

source/sink parameter values and observed that the axial velocity decreases on increasing 

source/sink parameter. It produces heat due to the flow of bile in a duct; it leads to 

changes in temperature over the wall duct effect the axial velocity. 

 Fig. 9 describes the impact of the height of stenosis on the axial velocity with axial 

distance; curves clearly show the axial velocity decreases as the height of stenoses 

increases. It also observed that maximum decay in velocities at a maximum height of the 

stenosis produces maximum resistance in the path of bile flow—the obstacle region 

  (        ). 

 Figs. 10-14 illustrate the behavior of the pressure gradient distribution of the flowing 

bile in the presence of stone characterized by Carreau's fluid model at a particular instant 

of time for different value of Grashof number   , Knudsen number   , source/sink 

parameter  , power index m and amplitude ratio  . 
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 Fig. 10 reports two cases of Gershoff   , in case (i)      (cooling condition of 

duct wall) on increasing   , pressure gradient decreases, it means changing pressure with 

axial distance is reduced in cooling/freezing condition and clearly observed the peak of 

pressure gradient in the curve corresponding to the calculus, this implies that the pressure 

maximum at       is the maximum height of the stone at       . The stenosed region 

represents   (        ). In case(ii) when      (heating condition of duct wall) 

converse trend is observed, it means pressure gradient increases as we increase the 

temperature of the duct wall. It helps to increase the velocity of the fluid, so more pressure 

is required in the blockage region to maintain the same flux.  

 Fig. 11 shows the variation of pressure distribution with the axial distance it is seen 

pressure increases on increasing   . It means more pressure is required to maintain the 

same flux as we increase the slip parameter; it is clearly observed that maximum pressure 

is in the stenosed region   (        ). 

 Fig.12 depicts pressure gradient has two phases, i.e.,            , this shows 

on increasing fluid behavior index, the pressure gradient also increases. When the fluid 

behavior index increases, it means the viscous force of the fluid increase due to the high 

viscous force the bile is thick, so more pressure is required to maintain the same flux. It 

clearly shows that the maximum pressure is required in the blockage region   (        ). 

 Fig. 13 displays the pressure distribution with axial distance for different values of 

source/sink parameter. We observed that the pressure gradient decreases on increasing 

source/sink parameter, it means heat increases on the duct wall, and the produced heat is 

due to the flow of bile in the duct. 

 Fig. 14 shows the variation of pressure distribution with axial distance for different 

values of amplitude ratio, pressure gradient increases on increasing the amplitude ratio. It 

means more pressure is required to maintain the same flux throughout the duct at a high 

amplitude ratio. A high amplitude ratio leads to a decrease in the cross-section during 

bolus propagation. It can be seen maximum pressure occurs at       and less pressure is 

required in wider part   (     ) (      ) of the duct. 

 Fig. 15 displays the variation of pressure distribution with axial distance for different 

stenosed heights. The pressure gradient increases on increasing the height of the stenosis 

and noticed that obstacle size increases in the duct, so more pressure is required to 

maintain the same flux in thein obstacle region   (        ). At the maximum height of 

the stenosis, maximum pressure is required to maintain the same flux through the duct. 

 Figs. 16-19 display the results of calculated pressure rise in terms of average flux 

with different emerging parameters. All plotted graphs represent the linear relationship 

between pressure rise and average flux. The pumping phenomenon can be classified into 

three regions, where the change in pressure rise is carried out. The region      is 

known as the pumping region and is also called a positive pumping region for      . If 

     is known as co-pumping region and      is called a pumping-free region. 

 Fig. 16 depicts the variation of pressure rise with average flow rate for different 

values of Gershoff number, it is noticed when varying      then decrement in pressure 
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rise for a given flux. It is also observed that the pressure rise is less decreasing for the high 

value of Gershoff number   . 

 Fig. 17 displays the variation of pressure rise with average flow rate for different 

values of power index  . We noticed that for a large value of fluid behavior index, the 

pressure rise decreases for given flux and also observed that the value of fluid behavior 

index     the pressure rise is more decreasing comparatively. 

 Fig. 18 shows the variation in pressure rise with average flux for different values of 

source/sink parameter; it is noticed as we increase the source/sink parameter, the pressure 

rise decreases linearly. It is also observed that for a higher value of source/sink parameter, 

the pressure rise is increasing comparatively. 

 Fig. 19 displays the variation of pressure rise with average flux for different values of 

Knudsen number and noticed that the pressure rise decreases on increasing the slip 

parameter. 

 

  
Fig. 4. Axial velocity profile for different 

Gershoff number (Gr) at           
                       , m=0.56, 

 =0.5   =0.5,         

Fig. 5. Axial velocity profile for different 

Knudsen number (  )            
           ,            , m=0.56, 

 =0.5   =0.5,         

 

 
 

Fig. 6. Axial velocity profile for different fluid 

behavior index (m) at                
           ,            ,  =0.5   =0.5,  

       
 

Fig. 7. Axial velocity profile for different 

amplitude ratio                   
           ,            , m=0.56   
  =0.5,         
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Fig. 8. Axial velocity profile for different source 

and sink parameter   at          
                   ,              

m=0.56,  =0.5   =0.5,        

 

Fig. 9. Axial velocity profile for different height 

of stenosis index (m) at         
                  ,              

 =0.5   =0.5,        ,        

 

  
Fig. 10. Pressure gradient profile for different 

Grash of number (Gr) at           
           ,            , m=0.56,   = 

0.5    = 0.5,        . 

 

Fig. 11. Pressure gradient profile for different 

Knudsen number (  )            
           ,            , m=0.56,   = 

0.5    = 0.5,        . 
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Fig. 12. Pressure gradient for different power 

index (m)          ,                 
     ,            ,    = 0.5     = 0.5,  

      . 

 

Fig. 13. Axial velocity profile for different 

source and sink parameter( )        , 

                             , 

m = 0.56,   = 0.5    = 0.5,        . 

 

  
Fig. 14. Pressure gradient profile for different 

amplitude ratio   at                
           ,            ,  m = 0.56   = 

0.5,       . 

 

Fig. 15. Pressure gradient for height of stenosis 

( )         ,                 
     ,      , m = 0.56,   = 0.5    = 0.5,  
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Fig. 16. Pressure rise versus flow rate for 

different value of Grashof number(  ) at    
                  ,              m 

= 0.56,  = 0.5    = 0.5,        . 

 

Fig. 17. Pressure rise versus flow rate for 

different power index ( ) at         
                  ,             

  = 0.5    = 0.5,        . 

 

  
Fig. 18. Pressure rise versus flow rate for 

different source and sink parameter ( )       
 ,                              , m 

= 0.56,   = 0.5    = 0.5,        . 

 

Fig. 19. Pressure rise versus flow rate for 

different Knudsen number (  )       
                ,             

m = 0.56,   = 0.5    = 0.5,        . 

 

 

5. Conclusion 

 

This mathematical model is solved analytically for peristaltic transport of lithogenic bile 

through a calculus duct under the effect of heat transfer with wall slip conditions and 

studied the effect of emerging parameters i.e., source/sink parameter, Grashof number, 

Knudsen number, amplitude ratio and fluid behavior index on axial velocity, pressure 

gradient and pressure rise. Here we considered two dimensional equations and these 

equations are simplified using low Reynolds number and long wavelength approximation. 
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Adopting the perturbation technique, analytical expressions for axial velocity, pressure 

rise, and pressure gradient are drawn with MATLAB R2018b software. This paper has 

physical significance because it deals with a diseased biliary tree (small gallstones blocks 

the ducts) Results can be summarized as the following points. 

 In case of Grashof number, two different patterns of velocity are noticed, velocity 

increases as varying heat source/sink parameter and also observed that maximum 

decay in velocity at maximum blockage part. 

 Axial velocity decreases in stenosed region   (        ) on increasing slip 

parameter, fluid behavior index and the height of stenosis. 

 Pressure gradient also shows two different patterns for Grashof number, more 

pressure is required to maintain flux in cooling condition. 

 When heat source/sink parameter, Weissenberg number and amplitude ratio 

increases, pressure gradient also increases and it is observed that the maximum 

pressure occurs in stenosed region   (        ). 

 It is possible boost pressure rise for all effecting parameter of the model. 

 

The present study is directly related to the modelling of the bile flow for a non-

Newtonian fluid in the duct with calculus. The patient-specific mathematical model 

created, allows us to estimate the dynamics of the postoperative period, and this 

information helps to predict complications during surgery on the basis of pressure 

distribution data of bile. It also helps to find the position and size of stone in the ducts and 

notice the effect of temperature on the bile flow; it concludes some important results that 

velocity and the pressure vary with cooling and heating condition. 

 

Reference 

 
1. A. I. Edemskiy and  D. A. Edemskiy, Russian Surgery Bul. 7, 35 (2002). 

2. S. Agarwal and A. K. Shina, Int. J. Appl. Math. Mech. 8, 92 (2012).  

3. S. Maiti and J. C. Misra, Int. J. Eng. Sci. 49, 950 (2011). 

https://doi.org/10.1016/j.ijengsci.2011.05.006 

4. A. G. Kuchumov, Y. I.  Nyashin, and V. A. Samartsev, 7th WACBE World Congr. Bioeng. 52, 

158 (2013). https://doi.org/10.1007/978-3-319-19452-3_42 

5. S. Srinivas and R. Muthuraj, Int. J. Appl. Mech. 2, 437 (2010). 

https://doi.org/10.1142/S1758825110000573 

6. A. A. Khan, R. Ellahi, and M. Usman, J. Porous Media 16, 59 (2013). 

https://doi.org/10.1615/JPorMedia.v16.i1.60 

7. A. G. Kuchumov, Russian J. Biomechanics (2016). 
https://doi.org/10.15593/RJBiomech/2016.2.01 

8. N. Maheshbabu and S. Sreenadh, J. Math. Comput. Sci. 10, 1083 (2020). 

https://doi.org/10.28919/jmcs/4539 

9. W. Mahmood, M. Sajid, M. N. Sadiq, and N. Ali, Pramana 95, ID 7 (2021).  

https://doi.org/10.1007/s12043-020-02055-z   

10. J. S. Goud, P. Srilatha, L. Indira, B. Raju, and A. Praveen, J. Nat. Remedies 21, 18 (2020). 

11. S. K. Pandey and D. Tripathi, Int. J. Biomathematics 3, 473 (2010).  

https://doi.org/10.1142/S1793524510001094 

12. D. Tripathi and J. Mazumdar, J. Bionic Eng. 14, 643 (2015).  

https://doi.org/10.1016/S1672-6529(14)60154-2 

https://doi.org/10.1016/j.ijengsci.2011.05.006
https://doi.org/10.1007/978-3-319-19452-3_42
https://doi.org/10.1142/S1758825110000573
https://doi.org/10.1615/JPorMedia.v16.i1.60
http://dx.doi.org/10.15593/RJBiomech/2016.2.01
https://doi.org/10.28919/jmcs/4539
https://doi.org/10.1007/s12043-020-02055-
https://doi.org/10.1142/S1793524510001094
https://doi.org/10.1016/S1672-6529(14)60154-2


500 Modeling of the Peristaltic Lithogeic Bile Flow in the Calculus Duct 

 

13. S. Kumari, T. K. Rawat, and S. P. Singh, J. Sci. Res. 13, 821 (2021). 

https://doi.org/10.3329/jsr.v.2.029 13i3.52487 

14. R. C. Ooi, X. Y. Luo, S. B. Chin, A. G. Johnson, and N. C. Bird, J. Biomech. 37, 1913 (2004). 

https://doi.org/10.1016/j.jbiomech.2004.02.029 15 

15. A. G. Kuchumov, Y. I. Nyashin, V. A. Samarcev, and V. A. Gavrilov, Acta Bioeng. Biomech. 

15, 9 (2013). https://doi.org/10.5277/abb130402 

16. A. G. Kuchumov, V. Gilev, V. Popov, V. Samartev, and V. Gavrilov, Korea Aust. Rheol. J. 26 

81 (2014). https://doi.org/10.1007/s13367-014-0009-1 

17. N. T. M. El-Dabe, G. Moatimid, M. Gaber, and D. R. Mostapha, Appl. Math. Inf. 10, 673 

(2016).  

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.3329/jsr.v.2.029%2013i3.52487
https://doi.org/10.1016/j.jbiomech.2004.02.029%2015
https://doi.org/10.5277/abb130402
https://doi.org/10.1007/s13367-014-0009-1

