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Abstract 

Bovine Respiratory Disease (BRD) is a prevalent disease in cattle rearing systems globally 

with significant health and economic costs. Current diagnostic methods of BRD rely on 

subjective visual signs and physical examination, which are suboptimal. This study, 

therefore, aims to find a blood-based gene expression signature for the diagnostic 

identification of BRD in cattle. The Gene Expression Omnibus dataset, GSE152959, was 

downloaded and used for analysis. The analyses performed included differential gene 

expression (DGE), clustering and machine learning prediction. Ninety genes were 

differentially expressed in BRD samples compared to controls. The GSE150706 dataset was 

used as the test dataset for machine learning prediction. The DEGs identified clustered the 

GSE150706 samples with good accuracy. For the machine learning prediction, 92 % of 

correctly predicted samples were obtained using twenty genes as features. Therefore, the 

identified 20-gene expression signature has BRD diagnostic utility in cattle. This signature 

could potentially be used to develop standardized and reliable diagnostic tests of BRD in 

cattle. Improved diagnostics will lead to early detection and treatment, reducing the health 

and economic costs associated with the disease. Further validation in larger cattle cohorts is 

required. 
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1.   Introduction 

Bovine Respiratory Disease (BRD) is a prevalent disease in cattle rearing systems and is 

responsible for a huge amount of the ill health and mortality occurring in feed yards 

globally [1–3]. The disease causes high economic costs as a result of the decreased 

production and treatment costs increase [4,5]. BRD is caused by multiple factors, 

including host, pathogen, and environmental factors [6]. However, bacterial and viral 

members of the BRD Complex (BRDC) are the primary cause of the disease [7]. The 

major viral causes of BRD include bovine respiratory syncytial virus (BRSV), bovine 

parainfluenza virus type 3 (BPIV3), and bovine herpesvirus type 1 (BHV-1) [8]. 
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Investigating the underlying biology of the disease in cattle is crucial to reducing the 

significant health and economic costs associated with the disease.  

 Performing gene expression profiling to characterize cattle biology and disease is 

well-established [9–12]. RNA sequencing (RNA-Seq) is the current technology for 

measuring and quantifying gene expression. This is because it enables a more 

comprehensive mapping and transcriptome quantification method to identify genes 

differentially expressed between multiple conditions [13,14]. Transcriptome 

characterization by RNA-Seq is important for identifying biomarkers [15]. Gene 

expression profiling of bovine blood and bronchial lymph node tissues has been done to 

characterize gene expression changes due to BRD [7,16–19]. These reports have increased 

our understanding of the transcriptomic changes associated with BRD. However, current 

diagnostic methods of BRD in cattle are still suboptimal.   

 Common general clinical signs produce change in feed intake, body temperature 

increase, nasal discharge, decreased milk production, cough, and increased respiratory rate 

[20]. Diagnosis of BRD is by physical examination of the animal for visual signs of 

sickness [20,21]. This is a subjective method dependent on the accuracy of the evaluation 

done by the individual attempting the diagnosis. Indeed, many cases at the subclinical 

level are not detected until the animals are slaughtered [22]. Improved diagnostic methods 

would allow for the early detection of the disease, which would improve treatment 

outcomes. Therefore, the search for better methods of diagnosis of BRD is necessary. This 

study, therefore, aims to find a blood-based gene expression signature for the diagnostic 

identification of BRD in cattle.  

 

2. Materials and Methods 

 

2.1. Dataset 

 

The GSE152959 [7] BRD dataset was downloaded from the Gene Expression Omnibus 

(GEO) [23]. This dataset is a gene expression dataset derived from the whole blood of 

cattle challenged with BRSV and control cattle. This dataset is comprised of eighteen (18) 

samples, including twelve (12) BRD (BRSV challenged) samples and six (6) control 

samples. The gene expression values were in raw counts format.   

 

2.2. Differential gene expression analysis 

 

Low expressed count values were removed using the filterByExpr function in the edgeR 

package in R [24]. Differential gene expression (DGE) analysis was then performed 

between the BRD and control groups with the DESEq2 R package [25]. An adjusted p-

value < 0.05 and a 1.5 fold change threshold were set in the DGE analysis to identify 

differentially expressed genes. Thereafter, a heatmap of the genes differentially expressed 

was plotted with the pheatmap package in R. The corresponding gene symbols of the 

Ensembl IDs were obtained using the biomaRt R package [26,27].   

 



A. Giwa et al., J. Sci. Res. 14 (2), 593-599 (2022) 595 

 

 

2.3. Machine learning  

 

The differentially expressed genes were assessed for their use as biomarkers of BRD in 

cattle. The GSE152959 dataset was used as the training set, while the GSE150706 [19] 

dataset was used as the testing set. The GSE150706 dataset is a gene expression dataset 

derived from the blood of 24 samples at three different stages; Entry (at arrival in feedlot), 

Pulled (with identified sickness), and Close-out (At recovery, healthy animal). These three 

stages represented subclinical, clinical, and healthy states, respectively [19]. All samples 

were used as the testing set for machine learning prediction. The close-out stage was the 

healthy state, while the entry and pulled stages were the diseased stages.   

 Firstly, the DEGs identified in the DGE analysis were used to cluster the GSE150706 

samples to assess their possible use for machine learning classification tasks. The machine 

learning feature selection technique was then performed. Log2 transformed counts values 

were used for constructing the training and test set. Thereafter, we performed recursive 

feature elimination (RFE) to obtain the features with better classification performance. For 

the RFE, a linear support vector machine (SVM) algorithm was used for building a model, 

which was assessed with repeated stratified 5-fold cross-validation to find the best 

features and parameters for classification. The differentially expressed genes obtained 

from RFE were used to build an SVM model. LibSVM [28] was used to create the SVM 

model using the polynomial kernel and a cost value of 2. A built-in LibSVM python script 

was used to scale the training and test sets' feature values. Thereafter, the 72 samples of 

the GSE150706 dataset were used to test the SVM model. The metrics for evaluating the 

model were accuracy, f1-score, recall, and precision.  

 

3. Results and Discussion 

 

The filtration step of the DGE analysis removed 11717 genes with low expression and 

kept 12879 genes for further analysis. The DGE analysis identified 90 differentially 

expressed genes (DEGs) between the two comparison groups. Among these 90 DEGs, 68 

were upregulated while 22 were downregulated. This result demonstrates a strong host 

transcriptional response reflected in the blood tissue of cattle with BRD. Similar results 

were reported by Scott et al. [18], who also noted transcriptional differences between 

cattle that developed BRD and those that did not develop BRD (healthy) within the same 

herd.  

 The DEGs accurately clustered the samples into their respective groups (Fig 1A), 

differentiating diseased samples from controls. Clustering the GSE150706 samples using 

the DEGs identified demonstrated that the DEGs could potentially be used for machine 

learning classification (Fig. 1B). The entry and pulled samples generally clustered 

together and were separated from the close-out samples (Fig. 1B). These results 

demonstrated the classification ability of the DEGs as shown in the clustering results of 

the GSE150706 test dataset, where the entry (subclinical) and pulled (clinical) samples 

were generally clustered together. This is consistent and in line with the fact that the Entry 

and Pulled stages are BRD stages but different disease time points [19].   



596 Bovine Respiratory Disease in Cattle 

 

 

 Twenty genes were selected from the 90 DEGs to be the best features for 

classification from the RFE performed (Table 1). These 20 genes were used in 

constructing the machine learning training and test sets (Table 1). The repeated stratified 

5-fold cross-validation resulted in an accuracy of 100%. Assessment of the SVM model 

with the GSE150706 test set resulted in an accuracy of 92% (66/72) of correctly predicted 

samples (Table 2). Four healthy state samples and two diseased samples were 

misclassified. The high accuracy results from the SVM model (Table 2) built on the 20 

DEGs demonstrate that they could be used as diagnostic indicators of BRD in cattle. This 

20-gene expression signature, therefore, has BRD diagnostic utility. Many of these genes 

are associated with inflammatory response and immune regulation [29–38]. Activation of 

the immune response is crucial to resolving the disease.  

 Improvement in diagnosis of BRD will lead to early detection, eliminate non-

detection of subclinical cases, early treatment, ultimately reducing the significant 

morbidity, mortality, and economic costs associated with the disease. However, further 

validation in larger cattle cohorts is required.  

 
Table 1. Information on 20 DEGs selected by RFE used for machine learning prediction. 
 

Ensembl ID Gene symbol log2FC p-adj Status 

ENSBTAG00000014113 CCL8 4.54692 9.57953e-11 Up 

ENSBTAG00000015596 SLCO2B1 4.49062 1.0740e-06 Up 

ENSBTAG00000003152 IFI27 3.99460 2.10357e-05 Up 

ENSBTAG00000013167 SIGLEC1 3.74138 3.27498e-11 Up 

ENSBTAG00000001826 SASH1 2.84225 2.24283e-07 Up 

ENSBTAG00000014529 GBP4 2.64954  5.32350e-15 Up 

ENSBTAG00000011467 BATF2 2.55206  2.24283e-07 Up 

ENSBTAG00000016042 TM6SF2 2.41732  0.00903 Up 

ENSBTAG00000038737 P2RY6 2.38926 3.04185e-08 Up 

ENSBTAG00000014046 BPI 2.31362 0.00557 Up 

ENSBTAG00000010057 GZMB 2.18215 0.00707 Up 

ENSBTAG00000019018 LOC112441484 1.72261 0.03756 Up 

ENSBTAG00000019015 IFITM3 1.71952 3.26177e-14 Up 

ENSBTAG00000008612 C1R 1.58201 0.01466 Up 

ENSBTAG00000008248 DMD -2.97592 2.24283e-07 Down 

ENSBTAG00000007073 CPB2 -2.34423 0.00056 Down 

ENSBTAG00000013305*  -2.24336 0.00606 Down 

ENSBTAG00000007490 SULF2 -1.85160 9.59336e-05 Down 

ENSBTAG00000008945 SDSL -1.82149 0.00902 Down 

ENSBTAG00000013078 DNAH11 -1.57412 0.00735 Down 
Shown are Ensembl IDs, gene symbols, fold change (log2FC), p-adjusted value and expression status. *gene 

name/symbol not available.  

 
Table 2. Prediction results of the GSE150706 test set of BRD and healthy cattle. 
 

Class Precision Recall  F1 score 

Healthy 0.91 0.83 0.87 

BRD 0.92 0.96 0.94 

Accuracy 92% 
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4. Conclusion 
 

In this study, we identified a 20-gene expression signature capable of diagnosing Bovine 

Respiratory Disease in cattle. This signature could potentially be used to develop 

standardized and reliable diagnostic tests of Bovine Respiratory Disease in cattle. This 

would be an improvement over the current subjective and visual diagnosis of the disease.  
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