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Abstract

In this paper, a systematic approach is designed for investigating the hybrid projective
synchronization (HPS) in identical chaotic Hamiltonian systems based on Hénon-Heiles
Model by using active control method (ACM). Initially, an active control law is described
to achieve asymptotic stability of state vectors of given system using Lyapunov stability
theory (LST). Additionally, numerical simulations utilizing MATLAB toolbox are
presented to validate the efficiency and effectiveness of the designed approach.
Furthermore, the proposed strategy has numerous applications in encryption and secure
communication.
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1. Introduction

Over the years, chaos theory has been an intriguing and a prominent field of nonlinear
science that focuses on the behavioral analysis of immensely irregular or disordered
dynamical systems hugely found in nature. This theory plays a significant role in various
fields, for example, secure communication [1], weather models [2], neural networks [3],
biomedical engineering [4], robotics [5], ecological models [6], oscillations [7], chemical
reactions [8], finance models [9], jerk systems [10], encryption [11], etc. As a result,
chaos control as well as synchronization have sought significant attention among several
research fields.

A key characteristic of chaotic systems, mentioned as “Butterfly Effect” in available
literature, is high sensitive dependency on initial conditions and it was first observed in
1963 by Lorenz [12] while studying a weather prediction model. Most importantly, Pecora
and Caroll [13] firstly announced in 1990 the notion of synchronization of chaotic
systems. In chaos synchronization phenomenon, the trajectories of state variables of two
or more chaotic/hyperchaotic systems are regulated to follow the identical dynamics. In
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recent times, chaos synchronization in chaotic systems utilizing various control methods
has become an engaging and a fascinating topic of study for the scientists and researchers.
In the last three decades, several techniques of significance are initiated and studied to
control [14-18] and synchronization [19-27] of chaos existing in dynamical systems.

Specifically, Bai and Lonngren [28] introduced active control method (ACM) in
chaotic systems in the year 1997. Since then, numerous researches have been executed
using ACM [14,19,24,29- 35]. In view of above discussions, the primary goal in this
paper is to investigate hybrid projective synchronization (HPS) among identical newly
designed Hamiltonian chaotic systems [36] based on Hénon-Heiles model by ACM.
Primarily, Hénon and Heiles [37] in 1964 firstly modeled the Hénon-Heiles model that
describes the nonlinear motion of a star around a galactic centre with the motion restricted
to a plane.

2. Preliminaries

The master system and the corresponding slave system can be written as:

u. =g, (u,), 1)
Ug =g, (Uy) + 4, @)
where U, = (Up1,Upo,Upgyeees Unn )T Ug = (Ugy, Ugy, Ugg, o Ug,, ) are the state variables of

(1) and (2) respectively, g,,g,:R" —R" are two nonlinear continuous vector functions
and g = (4, thy, 1y, -y 14,) € R" i the controller to be designed.

Definition 1. The master system (1) and the slave system (2) are said to be in hybrid
projective synchronization (HPS) if

!imPe(t)P=!imPus(t)—y/um(t)P:O 3)
for some y =diag(y,,y,, Vs, .......,,) and P.P represents vector norm.

Remark 2.1. For w, =y, =y, = ........ =y, = 1, complete synchronization is achieved.
Remark 2.2. For w, =y, =y, = ........ =y, = -1, anti-synchronization is attained.

Remark 2.3. If y;s are not all zeros and y; =y, for some i and j, then modified
projective synchronization is obtained.

3. System Description

Proposed by Vaidyanathan et al. [36], the considering chaotic system can be described as
u.,= u

m;1 m;2
. - 2
um;Z - _um;l - 2um;:lum;3 + Ium:l (4)
um;3 = um;4
., = —u ,—u’ +u’, +mu’
m4 — " Ym3” Ymi + m;3 + m;3?

where (U, Upps Uns Uy )T € RY s state vector and | and m are positive parameters.
For 1=0.98 and m=0.99, the system (4) exhibits chaos phenomenon. Further, the
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Lyapunov exponents of system (4) are LE, =0.0015, LE, =0, LE, =0, LE, =-0.0015
Also, Fig. 1 (a-c) display the phase plots of (4). However, the analytic study and
numerical results in detail for the system (4) can be found in literature [34].

(a) (b) (c)
Fig. 1. Phase plots of considered Hamiltonian chaotic system in (a) u,.,—U.,; plane, (b)

Upa —Un., Plane, (¢) Uy, —Ug,. — U, space.

m;1
4, Hlustrative Example

In this section, hybrid prijective synchronization scheme is discussed to design the
nonlinear active control law in such a manner that the state variables u,,u,,,u,, and u,,
approach to equilibrium points as t tends to infinity.

Conveniently, the system (4) has been selected as the master system and the
corresponding slave system may be defined as:

ml?

Uy = U+ 44

U, = —Ugy —2Ug U, +1UZ, + -
us;3 = us;4 + lu3

Ugy = —Ugy— us2;1 + Us2;3 + mu;‘s + 4y,

where g, u,, p, and g, are active nonlinear controllers to be designed in a way that
HPS of two identical chaotic Hamiltonian systems will be achieved. Also, Fig. 2(a-c)
show the phase plots of the slave system .

(a) (b) (c)

Fig. 2. Phase plots of Hamiltonian chaotic system chosen as the slave system in (a) Ug, —Ug,

plane, (b) u,, —Ug, plane, (c) Ug, —Ug, —Ug, Space.

State errors are defined by the following rule:



418 Chaotic Hamiltonian System Based on Hénon-Heiles Model

B = Uy -l
E, = Uy, =Wl
Es= Uy -yl
E,= Uy =Wl
The ultimate aim here is to construct controllers z,(i =1,2,3,4) using LST [38,39] so

that the synchronization errors defined in (6) satisfy
!im E (t)=0 for(i=1,23,4).

(6)

The resulting error dynamics has been given by

El = E+(y, _‘//1)um;2 4
E:z = -E+,- '//1)um;1 - 2(us;1us;3 - V’zum;lum;a) + I(usz;l - ‘/’2”51;1) T4, @)
Es= E,+Ws—WsUps+ 14
E4 = -E+(v, _W3)um;4 - (usz;l _l//Auri;l) + (usz;s _l//4ur2n;3) + m(Uf;s _W4u;;3) + 4.
Now, the active controllers are described as:
M= _Ez_('//z_yﬁ)um;z_lﬂEl
= E—(y,- V’l)um;l + 2(us;lus;3 - ‘//zum;lum;a) I (usz;l - WZuri;l) -LE,
_ ®)
M= —E, = (v, —vs)u,, — LE;
= Ej=(y, _V/a)um;4 + (u52;1 _‘//4u§1;1) - (usz;a _‘//4u§1;3) - m(ug;s _‘//4u:13;) -LE,,
where L >0, L, >0, L, >0, L, >0 are gain constants
By putting the active controllers (8) in error dynamics (7), we find that
El = - L1E1
E:2 i -LE, )
E3 -~ L3E3
E4 = - L4E4
The classic Lyapunov function is described by the rule:
\Y; :%[E12+E22+E§+Ef], (10)
which confirms that V is positive definite.
Derivative for Lyapunov function V takes the form:
V =EE, +E,E, +E,E, +E,E,. (11)

Theorem 1. The chaotic systems (4)-(5) are asymptotically hybrid projective
synchronized globally for all initial states (u,,(0),u,.,(0),u,(0),u,,(0)) e R* by the
designed active controller.
Proof. The Lyapunov function V as given in (10) is a positive definite function. On
solving, equations (9) and (11) give rise to
V=-LE - LE - LE -LE;
<0,
ensuring that V is negative definite .
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Thus, using Lyapunov stability theory [38,39], we deduce that synchronization error
e(t) >0 exponentially as t — o for each initial conditions e(0) e R*. This ends the
proof.

5. Numerical Simulation and Discussion

This section presents some numerical simulations to show effectively the proposed HPS
technique via ACM. The parameters of system (4) are selected as a =0.98 and b =0.99
to confirm the chaoticity of considered system without control inputs. Also, Fig. 1(a-c)
and Fig. 2(a-c) display phase plots of the master (4) and slave system (5) respectively. The
initial  states of the master (4) and slave systems (5) are
(u,,(0)=0.2,u,,,(0) = 0,u,,;(0) =-0.2,u,,(0) = 0) and
(u,,(0) =0.2,u,(0) = 0.2,u,,(0) = 0.2,u,,(0) = 0) respectively. The control gains are taken
as K,=6 for i=1,2,..,6. Further, simulation results regarding the state hybrid
projective synchronized trajectories of chaotic systems (4) and (5) are shown in Fig. 3(a-
d). Moreover, Fig. 3(e) depict  that the  synchronization  error
(E,E,,E,,E,) =(0.6,0.2,-0.6,0) converging to zero as t tending to infinity. Hence, the
proposed HPS strategy in master and slave system has been achieved computationally.
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Fig. 3. HPS synchronization of Hamiltonian chaotic system (a) between u.(t)—u.,(t), (b)
between u,.,(t)—u,,(t), (c) between u_.(t)—uy,(t), (d) between u ., (t)-u,.,(t), (e)
synchronization errors.
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6. Conclusion

In this paper, hybrid projective synchronization of integer order identical Hamiltonian
chaotic systems has been investigated using active control method keeping Lyapunov
stability theory in mind. Further numerical simulations in MATLAB toolbox are presented
to validate the effectiveness of the proposed technique. Remarkably, the theoretical results
are in complete agreement with computational results. Such strategy can be used to
control the nonlinear motion of a star around a galactic centre with motion restricted to a
plane. Moreover, the proposed scheme may find applications in the field of image
encryption and secure communication.
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