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Abstract 

In this paper, a systematic approach is designed for investigating the hybrid projective 

synchronization (HPS) in identical chaotic Hamiltonian systems based on Hénon-Heiles 

Model by using active control method (ACM). Initially, an active control law is described 

to achieve asymptotic stability of state vectors of given system using Lyapunov stability 

theory (LST). Additionally, numerical simulations utilizing MATLAB toolbox are 

presented to validate the efficiency and effectiveness of the designed approach. 

Furthermore, the proposed strategy has numerous applications in encryption and secure 

communication.   
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1.   Introduction 

Over the years, chaos theory has been an intriguing and a prominent field of nonlinear 

science that focuses on the behavioral analysis of immensely irregular or disordered 

dynamical systems hugely found in nature. This theory plays a significant role in various 

fields, for example, secure communication [1], weather models [2], neural networks [3], 

biomedical engineering [4], robotics [5], ecological models [6], oscillations [7], chemical 

reactions [8], finance models [9], jerk systems [10], encryption [11], etc. As a result, 

chaos control as well as synchronization have sought significant attention among several 

research fields. 

A key characteristic of chaotic systems, mentioned as “Butterfly Effect” in available 

literature, is high sensitive dependency on initial conditions and it was first observed in 

1963 by Lorenz [12] while studying a weather prediction model. Most importantly, Pecora 

and Caroll [13] firstly announced in 1990 the notion of synchronization of chaotic 

systems. In chaos synchronization phenomenon, the trajectories of state variables of two 

or more chaotic/hyperchaotic systems are regulated to follow the identical dynamics. In 
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recent times, chaos synchronization in chaotic systems utilizing various control methods 

has become an engaging and a fascinating topic of study for the scientists and researchers. 

In the last three decades, several techniques of significance are initiated and studied to 

control [14-18] and synchronization [19-27] of chaos existing in dynamical systems.  

Specifically, Bai and Lonngren [28] introduced active control method (ACM) in 

chaotic systems in the year 1997. Since then, numerous researches have been executed 

using ACM [14,19,24,29- 35]. In view of above discussions, the primary goal in this 

paper is to investigate hybrid projective synchronization (HPS) among identical newly 

designed Hamiltonian chaotic systems [36] based on Hénon-Heiles model by ACM. 

Primarily, Hénon and Heiles [37] in 1964 firstly modeled the Hénon-Heiles model that 

describes the nonlinear motion of a star around a galactic centre with the motion restricted 

to a plane.  

 

2.  Preliminaries  

 

The master system and the corresponding slave system can be written as:  

1= ( ),m mu g u  (1) 

2= ( ) ,s su g u   (2) 

where 
;1 ;2 ;3 ;= ( , , ,...., )T

m m m m m nu u u u u , 
;1 ;2 ;3 ;= ( , , ,...., )T

s s s s s nu u u u u  are the state variables of 

(1) and (2) respectively, 
1 2, : n ng g R R  are two nonlinear continuous vector functions 

and 
1 2 3= ( , , ,......, ) n

n R       is the controller to be designed. 

 

Definition 1. The master system (1) and the slave system (2) are said to be in hybrid 

projective synchronization (HPS) if  

lim ( ) = lim ( ) ( ) = 0s m
t t

e t u t u t
 

P P P P  (3) 

for some 
1 2 3= ( , , ,......, )ndiag      and .P P represents vector norm.  

Remark 2.1. For 1 2 3= = = ........ = n    = 1, complete synchronization is achieved. 

Remark 2.2. For 
1 2 3= = = ........ = n    = -1, anti-synchronization is attained. 

Remark 2.3. If 
i s   are not all zeros and i j   for some i  and j , then modified 

projective synchronization is obtained. 

 

3. System Description  

 

Proposed by Vaidyanathan et al. [36], the considering chaotic system can be described as  

;1 ;2

2

;2 ;1 ;1 ;3 ;1

;3 ;4

2 2 4

;4 ;3 ;1 ;3 ;3

=

= 2

=

= ,

m m

m m m m m

m m

m m m m m

u u

u u u u lu

u u

u u u u mu




  


    

 (4) 

where 4

;1 ;2 ;3 ;4( , , , )T

m m m mu u u u R  is state vector and l  and m  are positive parameters. 

For = 0.98l  and = 0.99m , the system (4) exhibits chaos phenomenon. Further, the 
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Lyapunov exponents of system (4) are 
1 = 0.0015LE , 

2 = 0LE , 
3 = 0LE , 

1 = 0.0015LE 

Also, Fig. 1 (a-c) display the phase plots of (4). However, the analytic study and 

numerical results in detail for the system (4) can be found in literature [34]. 

 

 
Fig. 1. Phase plots of considered Hamiltonian chaotic system in (a) 

;2 ;3m mu u  plane, (b) 

;1 ;2m mu u  plane, (c) ;1 ;3 ;4m m mu u u   space.  

 

4. Illustrative Example 

 

In this section, hybrid prijective synchronization scheme is discussed to design the 

nonlinear active control law in such a manner that the state variables 
1 2 3, ,m m mu u u  and 

4mu  

approach to equilibrium points as t  tends to infinity. 

Conveniently, the system (4) has been selected as the master system and the 

corresponding slave system may be defined as:  

;1 ;2 1

2

;2 ;1 ;1 ;3 ;1 2

;3 ;4 3

2 2 4

;4 ;3 ;1 ;3 ;3 4

=

= 2

=

= ,

s s

s s s s s

s s

s s s s s

u u

u u u u lu

u u

u u u u mu












   



     

 (5) 

where 
1 , 

2 , 
3  and 

4  are active nonlinear controllers to be designed in a way that 

HPS of two identical chaotic Hamiltonian systems will be achieved. Also, Fig. 2(a-c) 

show the phase plots of the slave system . 

 

 
Fig. 2. Phase plots of Hamiltonian chaotic system chosen as the slave system in (a) ;2 ;4s su u  

plane, (b) ;2 ;3s su u  plane, (c) ;1 ;2 ;4s s su u u   space.  

 

State errors are defined by the following rule:  
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1 ;1 1 ;1

2 ;2 2 ;2

3 ;3 3 ;3

4 ;4 4 ;4

=

=

=

=

s m

s m

s m

s m

E u u

E u u

E u u

E u u
















 

  (6) 

The ultimate aim here is to construct controllers , ( =1,2,3,4)i i  using LST [38,39] so 

that the synchronization errors defined in (6) satisfy  

lim ( ) = 0 for ( =1,2,3,4).i
t

E t i


 

The resulting error dynamics has been given by 

1 2 2 1 ;2 1

2 2

2 1 2 1 ;1 ;1 ;3 2 ;1 ;3 ;1 2 ;1 2

3 4 4 3 ;4 3

2 2 2 2 4 4

4 3 4 3 ;4 ;1 4 ;1 ;3 4 ;3 ;3 4 ;3 4

= ( )

= ( ) 2( ) ( )

= ( )

= ( ) ( ) ( ) ( ) .

m

m s s m m s m

m

m s m s m s m

E E u

E E u u u u u l u u

E E u

E E u u u u u m u u

  

    

  

     

   


       


  
          

 (7) 

Now, the active controllers are described as:  

1 2 2 1 ;2 1 1

2 2

2 1 2 1 ;1 ;1 ;3 2 ;1 ;3 ;1 2 ;1 2 2

3 4 4 3 ;4 3 3

2 2 2 2 4 4

4 3 4 3 ;4 ;1 4 ;1 ;3 4 ;3 ;3 4 3; 4 4

= ( )

= ( ) 2( ) ( )

= ( )

= ( ) ( ) ( ) ( ) ,

m

m s s m m s m

m

m s m s m s m

E u L E

E u u u u u l u u L E

E u L E

E u u u u u m u u L E

  

    

  

     

   


      


   
         

 (8) 

where 
1 > 0L , 2 > 0L , 3 > 0L , 4 > 0L  are gain constants 

By putting the active controllers (8) in error dynamics (7), we find that  

1 1 1

2 2 2

3 3 3

4 4 4

=

=

=

=

E L E

E L E

E L E

E L E

 






 

 (9) 

The classic Lyapunov function is described by the rule:  

2 2 2 2

1 2 3 4

1
= [ ],

2
V E E E E    (10) 

which confirms that V  is positive definite. 

Derivative for Lyapunov function V  takes the form:  

1 1 2 2 3 3 4 4= .V E E E E E E E E    (11) 

 

Theorem 1. The chaotic systems (4)-(5) are asymptotically hybrid projective 

synchronized globally for all initial states 4

;1 ;2 ;3 ;4( (0), (0), (0), (0))m m m mu u u u R  by the 

designed active controller.  

Proof. The Lyapunov function V  as given in (10) is a positive definite function. On 

solving, equations (9) and (11) give rise to 
2 2 2 2

1 1 2 2 3 3 4 4=V L E L E L E L E     

< 0,  

ensuring that V  is negative definite . 
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Thus, using Lyapunov stability theory [38,39], we deduce that synchronization error 

( ) 0e t   exponentially as t   for each initial conditions 4(0)e R . This ends the 

proof.  
 

5. Numerical Simulation and Discussion 

 

This section presents some numerical simulations to show effectively the proposed HPS 

technique via ACM. The parameters of system (4) are selected as = 0.98a  and = 0.99b  

to confirm the chaoticity of considered system without control inputs. Also, Fig. 1(a-c) 

and Fig. 2(a-c) display phase plots of the master (4) and slave system (5) respectively. The 

initial states of the master (4) and slave systems (5) are 

;1 ;2 ;3 ;4( (0) = 0.2, (0) = 0, (0) = 0.2, (0) = 0)m m m mu u u u  and 

;1 ;2 ;3 ;4( (0) = 0.2, (0) = 0.2, (0) = 0.2, (0) = 0)s s s su u u u  respectively. The control gains are taken 

as = 6iK  for =1,2,...,6i . Further, simulation results regarding the state hybrid 

projective synchronized trajectories of chaotic systems (4) and (5) are shown in Fig. 3(a-

d). Moreover, Fig. 3(e) depict that the synchronization error 

1 2 3 4( , , , ) = (0.6,0.2, 0.6,0)E E E E   converging to zero as t  tending to infinity. Hence, the 

proposed HPS strategy in master and slave system has been achieved computationally. 

 
Fig. 3. HPS synchronization of Hamiltonian chaotic system (a) between ;1 ;1( ) ( )m su t u t , (b) 

between ;2 ;2( ) ( )m su t u t , (c) between ;3 ;3( ) ( )m su t u t , (d) between ;4 ;4( ) ( )m su t u t , (e) 

synchronization errors. 
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6. Conclusion 

 

In this paper, hybrid projective synchronization of integer order identical Hamiltonian 

chaotic systems has been investigated using active control method keeping Lyapunov 

stability theory in mind. Further numerical simulations in MATLAB toolbox are presented 

to validate the effectiveness of the proposed technique. Remarkably, the theoretical results 

are in complete agreement with computational results. Such strategy can be used to 

control the nonlinear motion of a star around a galactic centre with motion restricted to a 

plane. Moreover, the proposed scheme may find applications in the field of image 

encryption and secure communication. 
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