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Abstract 

A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers 

(usually positive integers).  For a simple graph G = (V, E) with vertex set V and edge set E, 

a labeling Φ : V ∪ E → {1, 2, ..., k} is called total k-labeling. The associated vertex weight 

of a vertex x∈ V under a total k-labeling Φ is defined as   ( )   ( )  ∑  (  ) ∈ ( )  

where N(x) is the set of neighbors of the vertex x. A total k-labeling is defined to be a vertex 

irregular total labeling of a graph, if for every two different vertices x and y of G, 

wt(x)≠wt(y). The minimum k for which a graph G has a vertex irregular total k-labeling is 

called the total vertex irregularity strength of G, tvs(G). In this paper, total vertex 

irregularity strength of interval graphs is studied. In particular, an efficient algorithm is 

designed to compute tvs of proper interval graphs and bounds of tvs is presented for interval 

graphs. 

Keywords: Design of algorithms; Interval graphs; Vertex irregular total labelling; Total 

vertex irregularity strength. 
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1.   Introduction 

In graph theory, the field of graph labeling is growing fast during the last three decades. 

Labeled graphs has wide range of applications including coding theory, x-ray, 

crystallography, radar, astronomy, circuit design, channel assignments of FM radio 

stations and communication network addressing. A labeling   of a graph is a function from 

the vertex set V or the edge set E or both to the set of natural numbers subject to certain 

conditions. If the domain is the vertex-set (edge-set) the labeling is called vertex-labeling 

(edge labeling). For a graph G = (V, E) a labeling : V ∪ E → {1, 2, ..., k} is said  to be a 

vertex irregular total k-labeling of the graph G if for every two  different vertices  x and  y 

of G, wt(x)≠ wt(y) where the weight of a vertex x in the labeling   is 

 

 

 

 where N (x) is the set of neighbors of x. The minimum k for which the graph G has an 

vertex irregular total k-labeling is called the total vertex irregularity strength of the graph 
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G and is denoted by tvs(G). The irregularity strength s(G) of a graph G can be defined 

only for graphs containing at most one isolated vertex and no connected component of 

order 2. On the other hand, the total vertex irregularity strength tvs(G) is defined for every 

graph G. This paper dedicated to the study of total vertex irregularity strength of a 

subclass of interval graphs, called proper interval graphs. 

 An undirected graph G =(V, E) is an interval graph, if the vertex set V can be put into 

one to one correspondence with a set of intervals I on the real line R such that two vertices 

are adjacent in G, if and only if their corresponding intervals have non empty intersection. 

A graph G is a proper interval graph, if there is an interval representation of G in which no 

interval properly contains another. 

 
Fig. 1. An Interval graph with its interval representation. 

 
 The intervals and the vertices of an interval graph are very similar things. Interval 

graphs are discussed extensively in [1]. Here, we assume that the input graph is given by 

an interval representation I which is the set of n sorted intervals labeled by 1, 2, . . . , n.  

 Let I={I1, I2, …, In} where Ij=[aj, bj],  j =1, 2, 3, . . . , n; be the interval representation 

of the given interval graph G =(V, E), V ={1, 2, . . . , n}, aj and bj are the left and the right 

end points of the interval Ij. Without any loss of generality, we assume that each interval 

contains both its end points and that no two intervals share a common end point. Also, we 

assume that the intervals in I are indexed by increasing right end points, that is, b1 < b2 < · 

· · < bn. This indexing is known as IG ordering. Fig. 1 shows an interval graph and its 

corresponding interval representation. An interval graph can be recognized in O(n + m) 

time which yields an interval representation in the certain instance. All graphs considered 

in this paper are connected, undirected and have no self loop or parallel edges. 

 The study of graphs labeling was initiated by Sadlacek in 1964 [2]. This study was 

continued by Stewart [3]. In 1986 Chartrand et al. [4] introduced irregular assignments 

and the irregularity strength of graphs. The motivation of Bača et al. [5] behind the 

definition of total irregularity strength of graphs came from elsewhere [4]. A lot of work is 

done for both vertex and edge variants of total irregularity strength of graphs [5-9,10-15]. 
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To date, the total vertex irregularity strengths are known only for some special classes of 

graphs. Bača et al. determined exact value of tvs for stars, cliques and prisms [5]. Also, 

they fixed boundary value of tvs for tree and (p, q) graph. 

 If G is a (p, q) graph with minimum degree δ and maximum degree ∆, then Bača et al. 

[5] proved that  

 

⌈
   

   
⌉     ( )           

 

 These results were then improved by Przybylo [14] for sparse graphs and for graphs 

with large minimum degree. Anholcer et al. established a new upper bound of the form 

[9]  

   ( )   
 

 
    

 Among the others, Ahmad et al. [6] fixed the lower bound of tvs of any graph. 

Moreover, Ahmad et al. [7,8] found an exact value of the total vertex irregularity strength 

for Jahangir graphs, circulant graphs and wheel related graphs. Wijaya and Slamin 

determined the exact values of the total vertex irregularity strength of wheels, fans, suns 

and friendship graphs [10]. Furthermore, Wijaya et al. found the total vertex irregularity 

strength for complete bipartite graphs [11]. Recently, a restricted variation of total 

irregular labeling is appeared in [15]. 

 In this study we find the TVS of proper interval graphs, a subclass of interval graphs 

and present an algorithm to determine the TVS of proper interval graphs. Moreover, the 

boundary values of tvs of proper interval graphs and interval graphs are presented. 

 

2. Notations and Preliminaries 

 

A clique of a graph is a set of vertices, such that, there exists an edge between every pair 

of vertices in the set.  

Lemma 1. (Fulkerson and Gross [16]). A triangulated graph and so an interval graph 

with n vertices has at most n maximal cliques. The number of maximal cliques is n if and 

only if the graph has no edges. 

 A connected interval graph with n vertices has at most n − 1 maximal cliques, when 

the graph is a path.  Gilmore and Hoffman have shown that the maximal cliques of an 

interval graph G can be linearly ordered such that for every vertex x ∈ V the maximal 

cliques containing x occur consecutively [17]. 

Theorem 1. Let G be an undirected graph. The following statements are equivalent [17]. 

     (i) G is an interval graph. 

     (ii) G does not contain chordless cycle with four or more vertices and its complement 

 ̅ is a comparability graph. 

     (iii) The maximal cliques of G can be linearly ordered such that for every vertex x of 

G, the maximal cliques containing x occur consecutively. 
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  A connected interval graph with n vertices has at least 1 maximal clique and at most 

n−1 maximal cliques. If the graph is a path then the number of maximal cliques is n−1 

whereas it becomes a complete graph if the number of maximal clique is 1. A clique with 

n vertices is denoted by Cn. 

Lemma 2.  For a clique Cn, tvs(Cn) = 2. 

Proof: Let Cn be a clique with n vertices v1, v2, . . . , vn. Then there exists an edge between 

every pair of vertices vi  and vj. The edge between vi  and vj is denoted by eij.  We define a 

function ϕ : V ∪ E → {1, 2} as follows: 

ϕ(v1) = 1, ϕ(e1j) = 1, j = 2, 3, . . . , n − 1 and ϕ(e1n) = 1. 

ϕ(v2) = 2, ϕ(e2j) = 1, j = 1, 3, 4, . . . , n − 1, ϕ(e2n) = 2. 

ϕ(v3) = 2, ϕ(e3j) = 1, j = 1, 2, 4, . . . , n − 2, ϕ(e3(n−1)) = ϕ(e3n) = 2. 

· · · · · · · · · 

ϕ(vn) = 2, ϕ(enj) = 2, j = 1, 2, . . . , n − 1. 

 Then weight of the vertices v1, v2, . . . , vn are n + 1, n + 2, . . . , 2n respectively. 

Therefore ϕ is a vertex irregular total labeling function and Cn has vertex irregular total 

labeling. Clearly, 2 is the minimum integer such that ϕ : V ∪ E → {1, 2} is a vertex 

irregular total labeling function. 

Therefore 

tvs(Cn) = 2. 

 The degree of all vertices of an interval graph G can be obtained in O(n
2
) time. Let Dr 

be the set of all vertices of G of degree r. Then the vertices of G can be partitioned into 

the sets Dδ, Dδ+1, . . ., D∆, where δ and ∆ are the minimum and maximum degree of G 

respectively. 

 Now, we prove a property of proper interval graph which plays an important role in 

our algorithm. 

Lemma 3. The number of leaf vertex of a connected proper interval graph is at most 2. 

Proof: Let G be a connected proper interval graph with n vertices 1, 2, . . . , n. Therefore 

none of the intervals properly contain any other interval. Then the intervals 2, 3, . . . , n − 

1 must intersect at least two intervals. This implies that the degree of each of the internal 

vertices 2, 3, . . . , n − 1 must be greater than 1. Therefore, only the end vertices 1 and n 

are potential leaf vertex. 

 From this lemma, it is observed that the cardinality of the set D1 is 0 or 1 or 2, that is, 

|D1| ≤ 2. 

Lemma 4. For any graph G with at least two vertices, tvs(G)≥2. 

Proof: Let G be graph with two vertices. Then degree of each vertex must be 1. With the 

integer 1, we can label only one vertex and the weight of that vertex will be 2 (both vertex 

and edge get the label 1). To label the other vertex, another integer is needed except 1. 

Therefore, at least two integers are required to label all the vertices of G.  

 Observe that, if it is possible to label the vertices and edges of a graph such that the 

weight of the vertices are consecutive integers starting from least possible weight, then tvs 

is achieved. Our aim is to label the vertices and edges of G in such a way that weight of 
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the vertices are consecutive integers subject to the condition that the highest possible 

weight is least. 

Lemma 5. If |Dk| = (k + 1)p + 1 (k > 1) for some positive integer p, then at least p + 1 

integers are required to label the vertices of Dk to follow vertex irregular total labeling. 

Proof: Using the integer 1, we can label only one vertex of Dk.  Each of the k edges 

incident on the vertex receive the label 1 and the vertex also gets label 1. Hence the 

weight of that vertex is    k + 1. 

 Using the integers 1 and 2, we can label k + 1 vertices and edges incident on that 

vertices as  1, 1, 1, ..., 1, 1 (k+1 terms); 1, 1, 1, ..., 1, 2 (k+1 terms); .....      ....; 2, 2, 2, ..., 

2, 2 (k+1 terms). 

 Hence by using the integers 1 and 2, total (k + 1) + 1 vertices can be labeled. 

 Again, by using the integers 1, 2 and 3, we can label k + 1 vertices of Dk and edges 

incident on that vertices as   2, 2, 2, ..., 2, 2 (k+1 terms); 2, 2, 2, ..., 2, 3 (k+1 terms); .....      

....; 3, 3, 3, ..., 3, 3 (k+1 terms). Hence by the integers 1, 2 and 3, total 2(k + 1) + 1 vertices 

can be labeled. Proceeding with similar logic, p(k + 1) + 1 vertices of Dk  can be labeled 

by using p + 1 integers 1, 2, . . . , p + 1. 

Lemma 6. Let |Dk| = (k + 1)p + 1 (k > 1 and p be an integer) and p + 1 consecutive  

integers  are used to label the vertices of Dk. Then p + 1 vertices of Dk+1 can be labeled 

using these p + 1 consecutive integers. 

Proof: Using p + 1 consecutive integers {1, 2, . . . , p + 1}, one can generate a maximum 

weight (k + 2)(p + 1) of the vertices of Dk+1. In that case each of the k + 1 edges and the 

only vertex get the label p + 1. Again by using these p + 1 consecutive integers, a 

maximum weight (k + 1)(p + 1) is possible for the vertices of Dk. Hence (k + 2)(p + 1) −(k 

+ 1)(p + 1) = p + 1 consecutive weights can be generated by using the same p + 1 

consecutive integers. These p + 1 weights (k + 1)(p + 1) + 1, (k + 1)(p + 1) + 2 . . ., (k + 

1)(p + 1) + (p + 1) can be used to label p + 1 vertices of Dk+1.                                                                                                                                                                              

Lemma 7. Let |Dk| = (k + 1)p + 1 (k > 1 and p be a fraction) and ⌈p⌉ + 1 consecutive 

integers are used to label the vertices of Dk. Then (k + 2)⌈p⌉ − (k + 1)p + 1 vertices of Dk+1 

can be labeled by using these ⌈p⌉ + 1 consecutive integers. 

Proof:  Similar logic as in the previous Lemma. 

 From the above two lemmas it is observed that without increasing the value of tvs, we 

can label some extra vertices of higher degree. The number of extra vertices of Dk+1 can be 

labeled by the integers used to label the vertices of Dk is denoted by ek+1. The values of ei, 

(i = 3, 4, . . ., ∆) can be determined by using previous two lemmas.                                                

  

3. The Algorithm 

 

The main idea of the proposed algorithm is follows. The algorithm proceeds by labeling 

the vertices in increasing order of degree of the given graph. At first, the sets D1, D2, . . . , 

D∆ are computed. Depending on the cardinal number of these sets, tvs(G) is determined 

based on Lemma 4. 

 A formal description of the algorithm is given below. 
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3.1. Algorithm tvs 

 

Input: A set of n(> 1) sorted intervals of a proper interval graph G.                  

Output: Total vertex irregularity strength of G, that is, tvs(G). 

            Initialize i =   2 and T = 0. 

Step 1: Compute the sets D1, D2, . . ., D∆. 

Step 2: If | D1 |= 0 then 

       e2 = 0, go to next step else if | D1 |= 1 then 

               T = T + 1, e2 = 1 and go to next step 

                 else T = T + 2, e2 = 3 and go to next step 

                end if. 

Step 3: If | Di |= 0 then 

            i = i + 1 

          If i > ∆ go to last step 4. else | Di |=| Di | −ei 

                    If | Di |> 0 express | Di |= (i + 1)p + 1 

                      If T > 1, T = T + ⌈p⌉, i = i + 1, repeat step 3  

                        else T = T + ⌈p⌉ + 1, i = i + 1, repeat step 3                      

                      end if 

               else i = i + 1, repeat step 3 end if 

                end if. 

Step 4: tvs(G) = T 

 

3.2. End tvs 

 

The correctness of the algorithm follows from the previous lemmas. 

Theorem 2. For a proper interval graph G with n (> 1) vertices, 

     ( )  ⌈
   

 
⌉  

Proof: Observe that, if G be a complete graph of order n then tvs(G) = 2 (Lemma 2). If G 

be not complete then tvs(G) > 2. Therefore, tvs(G) ≥ 2. 

 Again, the tvs of a graph G will be maximum, if G consist of maximum number of 

vertices of less degree. Now, a connected proper interval graph with n vertices can have at 

most 2 leaf vertices and n−2 vertices of degree 2. In this case, G becomes a path Pn of n 

vertices. 

 Therefore | D1 |= 2 and | D2 |= n− 2. The integers 1 and 2 are necessary to label the 

vertices of D1. Using these two integers, we can label 3 vertices of D2, that is, e2 = 3. 

Hence, we have 

   ( )  ⌈
 - 

 
⌉  

Note that, the algorithm tvs does not work for general interval graph as the Lemma 2 

is not true for general interval graph. The maximum number of leaf vertex of an interval 

graph is n − 1. So, the algorithm needs modification depending on the number of leaf 

vertex to compute tvs of a general interval graph. 
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Theorem 3. For a connected interval graph G with n (> 1) vertices, 

     ( )  ⌈
 

 
⌉.     

Proof: The lower bound follows from the previous theorem. 

 Since maximum value of tvs can be attained when the graph has the maximum 

number of vertices of less degree. Therefore, an upper bound is attained if the graph has 

maximum number of leaf vertex.  Now, a connected interval graph G with n vertices can 

have at most n − 1 vertices of degree 1 (leaf vertex). In that case, G becomes a star and 

   ( )  ⌈
 

 
⌉. 

Therefore,      ( )  ⌈
 

 
⌉. 

 

4. Conclusion 

 

In this paper, an algorithm is designed to compute the exact value of tvs of proper interval 

graphs. Based on this algorithm the boundary values of tvs presented for proper interval 

graphs and interval graphs. Our approach can be generalized to determine the tvs of other 

intersection graphs, namely permutation graphs, trapezoid graphs and circular arc graphs.  

Future study can be done to find the value of tvs for these intersection graphs. 
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