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Abstract 

 

The study area Burutu lies within the transitional environment of the Niger delta. The area is 

sectioned by a compact network of rivers and creeks, which maintain a fragile but dynamic 

balance between saline, estuarine and freshwater surface bodies. Twenty direct current 

resistivity soundings were carried out to provide adequate information on the spatial 

lithological variation and groundwater conditions in Burutu. Resistivity contrasts and water 

analysis were used as a means of characterizing probable lithology and water type present 

within the pore spaces of aquiferous units. The results revealed spatial development of the 

aquifer architectural facies that follows a trend of mostly sand with little clay in the south to 

sand with abundant of clayey facies in the north near the Forcados River. The groundwater 

conditions indicated that salty/brackish water constituting about 4 % of water present was 

confined to the bank of the Forcados River and extend laterally landwards to about 120 m. 

Further away from the river bank, the water was mostly poor to good quality freshwater. 

The depth to the freshwater constituting about 96 % groundwater present varied from about 

49.0 – 63.3 m near the Forcados River and became as shallow as 1.6 m in inland areas. 
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1. Introduction 

 

Groundwater in the Niger Delta is stored in mainly very thick and extensive sandy and 

gravelly aquifer. Three aquiferous zones have been identified, and they include shallow 

aquifers comprising continental sands in the north, a transition zone of mingling marine 

and continental components and a coastal zone of mainly marine deposits in the south [1-

3]. The sand that occupies the lower deltaic plain is the source of water for the 

communities that occupy the coast. The coastal area of the Niger Delta is assaulted by 

natural and anthropogenic disturbances causing severe groundwater quality deterioration. 

A geophysical survey available in literature [4] around this area has shown that the 

groundwater is brackish to saline. 
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Studies on aquifer attributes and groundwater quality in the Niger Delta indicated two 

hydrogeochemical systems for the area: the inland and the coastal [1,5]. The coastal 

hydrogeochemical system is characterized by the prevalence of specific problems which 

includes salinity, biological contamination and the ubiquity of few undesirable ions such 

as high iron concentration in the groundwater. The drainage pattern of the Niger Delta 

region is made up of a closely packed network of distributaries, rivers, creeks and 

estuaries formed by the dynamism and interplay of the major river systems. This creates a 

condition of delta-wide hydrological continuity; such that contamination in one part of the 

delta can easily be experienced in other parts. Within the bounds of the estuarine confine 

of rivers, salt water may intrude into the underlying freshwater aquifers in diverse ways, 

which may depend on the hydraulic head, the river stage and the proportion of 

connectivity between the rivers and the aquifer [6]. 

The peculiar geographic location of the study area within the Brackish Mangrove 

Swamp (BMS) and proximity to the Atlantic Ocean make the shallow aquifer unsafe for 

potable water extraction. The use of underground water as a source of water supplies has 

been on the increase in recent years; this has led to a need of more in-depth studies on 

configuration, characteristics of aquifer and water quality. Hence, the objective of the 

present work is to discuss the geometry and suitability of groundwater from the shallow 

coastal aquifer of western Niger Delta, Nigeria for human consumption using 

geoelectrical approach. This is crucial because the coastal plains of the Niger Delta are 

characterized by water table very close to the surface, highly porous and permeable sands, 

which render the aquifer qualitatively vulnerable and quantitatively prolific. 

 

2. Geology 

 

The study area Burutu is located within the Niger Delta basin, which is situated on the 

continental margin of the Gulf of Guinea. The Niger Delta basin shows a widespread 

upward and updip variation from marine shales of the Akata Formation through cyclic 

sand/shale paralic interval belonging to Agbada Formation to the continental sands of 

Benin Formation. The Akata Formation which lies at the bottom of the delta is of marine 

origin, it consists of thick shale sequence, turbidite sand with less quantity of clay and 

silts. The Akata Formation, an open marine facies was formed during low stands which 

began in the Paleocene, as terrestrial organic matter and clays were deposited in a deep 

marine environment characterized by low energy state and paucity of oxygen [7]. The 

study area is underlain by the Benin Formation comprising Miocene to Recent sediments 

consisting unconsolidated, poorly cemented sands with alternating silt and clay [8]. The 

sandy sequence is generally poorly sorted and consists of fine to coarse grained [9]. The 

Benin Formation, which gradually grades into the Quaternary sediments of the Sombreiro-

Warri deposits form the aquifers. The Niger Delta extends over a large number of 

ecological zones, made up sandy coastal ridge barriers, brackish/saline mangrove, 

freshwater and swamp forest [1]. The aquifer is recharged through direct infiltration of 

rainfall.  
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3. Methodology 

 

Resistivity investigation in the study involved Schlumberger vertical electrical sounding 

and azimuthal resistivity sounding using an ABEM SAS 1000 terrameter. These 

techniques enabled evaluation of subsurface vertical resistivity effects such as variation in 

lithology, groundwater quality and direction of groundwater flow [10,11]. 

 

 
Fig. 1. Map of study area showing sounding locations. 

 

A total of 20 soundings were carried out at different locations, as shown in Fig. 1 with 

current electrode spacing (AB) varying between 1 and 600 m. An inversion algorithm 

based on iterative technique was used in the inversion of measured apparent resistivity 

values and corresponding current electrode spacing into layer resistivities and thicknesses 

(first-order geoelectric parameters). These parameters were converted to Dar Zarrouk 

parameters (second-order geoelectric parameters) which were eventually used in assessing 

aquifer protective capacity. Details of this approach were described elsewhere in previous 

studies [12,13]. Borehole information, especially in terms of lithology, has been used in 

constraining the inversion of the resistivity data. Iso-resistivity at depths of 5, 20, 40, 60 m 

and aquifer protective capacity maps have been prepared [14]. 
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One azimuthal resistivity sounding, which measures apparent resistivity in azimuths of 

0º, 45º, 90º and 135º as current electrodes, was expanded about a centre point was also 

carried. The apparent resistivity values obtained were plotted as functions of azimuth to 

produce a polar diagram. The principal axes of the apparent resistivity ellipse coincide 

with the direction of groundwater flow [15-17]. 

Surface and groundwater samples were collected from the Forcados River, hand dug-

wells and boreholes, respectively. The HACH Conductivity-TDS meter was employed to 

ascertain electrical conductivity (EC) and total dissolved solids (TDS) in-situ. Samples 

were analyzed for iron (Fe
2+

) and chloride (Cl
-
) in accordance with standard methods 

specified by American Public Health Association [18]. 

 

4. Results and Discussion 

 

According to Archie’s law for sandy materials [19], electrical resistivity can provide 

information about the fluid (water quality) that is in the pore spaces within the rock matrix 

in aquifers. This is because electrical resistivity is controlled by ion flow in liquids, i.e. 

water present within the aquifer. Some researchers have used resistivity contrasts as a 

means of characterizing probable lithology, salinity and water quality and this approach 

would be used in this study [20,21]. 

Spatial development of the aquifer architecture of facies resistivity revealed from this 

investigation follows a trend of mostly sand with little clay in the south to sand with 

abundant of clayey facies in the north near the Forcados River. This is typical of 

lithological succession revealed by others [10,22-24]. The iso-resistivity map of Burutu at 

different depths, as shown in Fig. 2; reveal the spatial lithological variation and water type 

present in the pore spaces within the rock matrix. The ruby red color depicts areas with 

porous sand and sandy clay/clay saturated with salty brackish water, the brown color 

represents area with saturated sand and sandy clay-bearing brackish water. The orange 

color indicates saturated sand/sandy clay-bearing very poor quality fresh water; the walnut 

color in areas with sand/clayey sand containing poor quality fresh water. The red color 

represents sand with minor clay containing intermediate fresh water while the remaining 

areas (sky blue and blue colors) are underlain by sand bearing good to very good quality 

fresh water. 

The resistivity at depths of 5 m, ranged between 3.8 – 6.1 Ωm in the northwestern part 

of the study area close to the Forcados River. In literature, saltwater resistivity values 

below 1.0 Ωm have been reported, in fact, sea water has an average resistivity of 0.2 Ωm 

[21], while the resistivity of a layer saturated by saline/salty brackish water and dissolved 

solids is in the range of 8.0 to 50.0 Ωm [20,21,25]. Therefore, based on these resistivity 

values, the results of this study emphasized the existence of strata inundated with brackish 

to saline water in about 10 % of the aquifer. The water type gradually changes southward 

to brackish water (8 % of groundwater present), very poor/poor quality fresh water (18 % 

of groundwater present), intermediate fresh water (34 % of groundwater present) and 

finally very good/good quality fresh water (45 % of water present) as seen in Fig. 2. 
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Fig. 2. Iso-resistivity map of Burutu at 5, 20, 40 and 60 m depth. 

 
However, at 20 m depth, close to the Forcados River, the aquifer is devoid of salty 

brackish water but contains brackish water (4 % of groundwater present). The water type 

gradually becomes fresh water moving away from the river bank with quality varying 

between very poor water to poor water quality (7 % of groundwater present). Very good 

and good water qualities constituting about 35 % of groundwater are noticeable in the 

north-central and southern parts. The remaining 54 % of groundwater is of intermediate 

water quality. At depths of 40 m, brackish water is absent in the subsurface near the 

Forcados River. The water type is mainly poor quality, intermediate and good to very 

good quality fresh water which constitutes about 8 %, 45 % and 47 % of groundwater 

present respectively. At depths of 60 m, about 75 % of water is fresh of good to very good 

quality; while the remaining 25 % of groundwater is intermediate fresh water localized in 

the west, northeastern and eastern parts. The presence of intermediate fresh water at 60 m 

in the western part is probably due to its proximity to the Atlantic Ocean separated from 

the sea by sand beach ridges. 

Caution should be exercised in the interpretation of very low resistivity as layers 

saturated with salty and brackish water at depths of 5 m and 20 m. This is because clayey 

layers are also conductive and may be misinterpreted as saline/brackish water 

contamination. As a result, this claim was validated with geochemical analysis of 

groundwater. Chloride level in Forcados River is about 3375 mg/L indicating that the 
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water is slightly saline to brackish. The level of chloride in groundwater is, however, low 

(between 5.4 – 242 mg/L) and when compared with World Health Organization (WHO) 

ith salty brackish to brackish water are within the proximity of the Forcados River around 

the northwestern and northern parts of Burutu. The groundwater in these areas constitutes 

about 4 % of total groundwater present; are confined to the river bank and extend laterally 

landward to about 120 m. Further away from the river, there were no indications of salty 

brackish/brackish water-saturated zones; the groundwater was mostly very poor to 

intermediate and good to very good quality freshwater. The depth to the fresh water 

(constituting about 96 % of total groundwater present) varied from about 49 – 63.3 m near 

the Forcados River and became as shallow as 1.6 m in inland areas.  

Studies by Aweto and Asuma et al. [10,27] indicated no evidence of aquifer 

contaminated by saline water. Similarly, it is reported that salinity of creeks has no 

significant effect on groundwater quality in parts of the Niger Delta [28]. The major 

challenge affecting the exploitation of groundwater resources in Burutu is the presence of 

iron. Iron content in groundwater in the area averages at 2.6 mg/L which was above 

recommended standard set by WHO [26]. This inference lends support to findings which 

also, identified the prevalence of iron as a significant constraint on the usage of 

groundwater for domestic purpose [27-30]. 

Furthermore, the degradation of groundwater may also have resulted from mineral 

enrichment by organic clays that underlie the area. Values of electrical conductivity (EC) 

and total dissolved solids (TDS) were observed to be 1055 – 1614 µS/cm and 504 – 938 

mg/L respectively in 25% of the area. The high values above the maximum contamination 

limits of 1000 µS/cm and 500 mg/L respectively are related to a higher concentration of 

ions in solution which is occasioned by mineral enrichment of clays. It has been reported 

previously by [10,31] that cation exchange by clays can significantly increase TDS. 

The protective capacity map of Burutu (Fig. 3) shows that the areas in the northern 

parts close to the Forcados River have good protective capacity, this has helped to protect 

the aquifer to screen off salty brackish/brackish water otherwise the extent of salinization 

would have been extensive vertically and laterally than revealed by this study. According 

to United Nation Environmental Program report [32], boreholes drilled near the coast may 

encounter connate water tapped in rapidly deposited sequences.The impermeable silt and 

clays tend to ‘screen off’ the salt water, so that fresh water becomes available, usually in 

artesian aquifers below 60m in the Benin Formation. At Escravos, Brass, and Bonny 

Opobo; fresh water has been encountered between 80 – 120 m from surface. 

The areas in the eastern parts though further inland; there was no indication of finding 

the water of good quality even at depths of 60 m (Fig. 2). The reason being that these 

areas are low lying wetlands dominated by marshes, generally at less than about 5 m 

above sea level, and crisscrossed by tidal creeks that divide the swamps into somewhat 

quasi-rectangular blocks. Marshes are frequently or continually inundated with water [33]. 
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Fig. 3. Protective capacity map of Burutu. 

 

Marshes derive most of their water from surface water including rivers, runoff and 

overbank flooding from tide related seawater that is propagated up river from the estuaries 

at high tide. Marshes may recharge groundwater by infiltration, depending on soil 

permeability and wetland size. Recharge is relatively plentiful in marshes and may 

contribute (up to 20 % of volume) to regional groundwater supply [34]. Marshes slow the 

flow of water moving through it and facilitate the settling of suspended solids and 

pollutants adhering to sediments. The greater the amount of open water present, the more 

sediment attached pollutants will remain suspended in the water column [35]. The fact 

that they are essential sinks for pollutants carried in upland from river areas is evidenced 

by the presence of intermediate to poor water quality in these areas. This scenario was 

probably accentuated by the weak and moderate protective capacity in the northwestern, 

eastern, western and central parts (especially around the VES 10, 11, 13, 14, 16 and 17).  

The azimuthal resistivity sounding and groundwater head contour map results (Figs. 4 

and 5) show that regional groundwater flow is in a southwest-northeast direction, 

indicating a hydraulic gradient towards Forcados River. It thus follows from literature 

[36] that Burutu is a discharge wetland; hence, the groundwater in aquifer recharges the 

Forcados River. There is, however, a local groundwater flow which interchanges with the 

regional flow. The interaction of groundwater and surface water in the estuary is 

influenced by the alternation of local and regional groundwater flow direction between the 

rivers and aquifer. Rivers/streams may be recharged by groundwater flow which 

remarkably fluctuates cyclically. Therefore, it is not uncommon for rivers/streams to have 

gaining or losing abilities that change periodically [37]. Rivers and creeks of the estuaries 

are predominated by saline water in the dry season. Saline water may invade the 
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freshwater aquifer that lies beneath in a variety of ways, depending on flow direction, the 

river stage and the degree of connectivity between the river and aquifer. This may be 

responsible for the presence of salty/brackish water within the proximity of the Forcados 

Riverbank. This assertion was supported by the evidence of fresh water swamps in Burutu 

while mangrove swamps were restricted only to the river banks. Besides, anthropogenic 

activities can also induce the advancement of saline water into estuarine environments. 

Activities such as the dredging of canals for navigation or petroleum exploration (pipeline 

canals) may give saltwater a direct route inland.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Polar diagram showing the direction of groundwater flow. 

 

 
Fig. 5. Groundwater head map at Burutu showing flow direction. 

 

 



                                                          K. E. Aweto, J. Sci. Res. 12 (3), 279-288 (2020) 287  

 

5. Conclusion 

 

Analysis of twenty (20) sounding data in the study area has revealed three lithological 

units: sand, clayey sand and clay. Groundwater present in the shallow aquifer was 

generally poor in quality. Areas saturated with salty to brackish water are restricted to the 

northern parts of Burutu close to the river bank and extend laterally to about 120 m 

landward. The groundwater in these areas constitutes about 4 % of the total groundwater 

present. The depth to the fresh water varied from about 49 – 63.3 m near the Forcados 

River and became as shallow as 1.6 m in inland areas. Assaulted by natural and 

anthropogenic disturbances, groundwater quality is gradually deteriorating in this region. 

This study has shown that 46 % percent of this area has a water of good quality. The 

deterioration of groundwater quality in the aquifer is related to the quantum of dissolved 

iron and organic matter rather than a saltwater intrusion. Good protective capacity and 

hydraulic head in the direction of the Forcados River, has helped to protect the aquifer and 

screened off salty brackish/brackish water otherwise the extent of salinization would have 

been extended to much greater depths and lateral extent than revealed by this study.  
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