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Abstract 

 
The linear stability of a rotating fluid  in  the annulus  between two concentric cylinders is 
investigated in the presence of a magnetic field  which is  azimuthal as well as in axial 
direction. Several results of MHD stability have been derived by using the inner product 
method. It is shown that when the swirl velocity component is large, the hydromagnetic 
effects become small compared with those due to swirl. The presence of a velocity field and 
imposed magnetic field will lead to the basic state to more stability. 
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1.  Introduction 
 
Howard and Gupta [1] investigated the stability of inviscid flows between two concentric 
cylinders which have an axial velocity component depending only on r in addition to a 
swirl velocity component in the direction of increasing azimuthal angle θ. Acheson [2]  
studied the hydromagnetic instability of a uniformly rotating fluid in the annular region 
between two concentric infinitely long cylinders. Following that analysis, a detailed 
hydromagnetic instability arising out of such a configuration has been simplified to yield a 
series of stability conditions. It has been shown that regardless of the magnetic field 
profiles, any unstable disturbance must have the ratio between angular velocity with the 
phase velocity in the azimuthal direction as negative and hence must propagate against the 
basic rotation. Zhang and Busse [3] investigated the instability of an electrically 
conducting fluid of magnetic diffusivity and viscosity in a rapidly rotating sphere when 
toroidal magnetic field is present. Liu et al. [4] examined the stability of an azimuthal 
base flow for both axisymmetric and plane-polar disturbances for an electrically 
conducting fluid confined between stationary, concentric, infinitely-long cylinders. When 
an axial magnetic field is applied, the interaction between the radial electric current and 
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the magnetic field gives rise to an azimuthal electromagnetic body force which drives an 
azimuthal velocity and infinitesimal axisymmetric disturbances to an instability in the 
flow. Goodman and Ji [5] investigated axisymmetric stability of viscous resistive 
magnetized Couette flow, with emphasis on flow that would be hydrodynamically stable 
according to Rayleigh's criterion: opposing gradient of angular velocity and specific 
angular momentum. In this regime, magnetorotational instabilities may occur. In studies 
of magnetic Taylor-Couette flow in the presence of an imposed axial magnetic field, 
Willis and Barenghi [6] find that values of the imposed magnetic field which alters only 
slightly, the transition from circular-Couette flow to Taylor-vortex can shift the transition 
from Taylor-vortex flow to wavy modes by a substantial amount. Deka and Gupta [7] 
have analyzed linear stability of wide-gap MHD dissipative Couette flow of an 
incompressible electrically conducting fluid between two rotating concentric circular 
cylinders when a uniform axial magnetic field is present. Rajaee and Shoki [8] considered 
the case when a transition layer exists between two fluids, and both density and magnetic 
field change across this layer. The numerical calculations show that while the increase of 
the Mach number and compressibility have a destabilizing influence, the increases in 
magnetic field strength and density provide a stabilizing effect. Jasmine [9] investigated 
stability of radial flow subjected to a radial magnetic field. The stability condition  derived 
is shown to remain valid even when the local velocity is not entirely radial, and that the 
magnetic field exerts a stabilizing effect on the flow. We have extended this work when 
both velocity components and magnetic field components are azimuthal as well as axial. 

In this presentation, we consider a non-dissipative fluid rotating uniformly in the 
annular region between two infinitely long cylinders. The objective is to investigate  the 
stability of MHD  flow with velocity components   for an incompressible fluid permeated 
by a  magnetic field, where the components are along  (r, θ, z) directions in cylindrical 
polar coordinate system, n is positive and A, B are constants. The magnetic lines of force 
are in general twisted by non-axisymmetric disturbances to the basic flow, whereas the 
axisymmetric disturbances only bend but do not twist the lines of force, and when the 
swirl velocity component r is large, the hydromagnetic effects become small compared 
with those due to swirl. These ideas have led us to investigate the MHD stability with 
respect to non-axisymmetric disturbances to the basic flow. The presence of velocity field 
in the basic state may cause more stability. Several results of MHD stability have been 
derived by using the inner product method. 
 
2.  Mathematical Formulation                  
 
Let us consider the basic flow (0, Vθ, Vz ) of an incompressible, inviscid and perfectly 
conducting fluid between two concentric cylinders of radii R1 and R2 permeated by a 
magnetic field (0, A/rn  , B/rn). The governing equations  are: 
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where  V  is the velocity vector,  t, P, ρ, μ, and r

H
r

 represent time,  pressure, density, 
magnetic permeability, and magnetic field, respectively.  

The perturbed velocity is ))(,)(,( zzr urVurVuV ++= θθ
r

. The perturbed magnetic field 
and the total presure  (hydrodynamic and hydromagnetic) are respectively taken as 
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 and ppP += ρρ 0 , where  is the unperturbed total 
pressure. Analysing the disturbances into normal modes, we seek solution of the foregoing 
equations whose dependence on t, θ , z  is given by , where c  = complex 
number, m = an integer, and  k = real number. We linearize the equtions in the usual way 
and seek solutions in which all perturbation quantities 
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The linearized magnetic induction  equations are 
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Following  Ganguly and  Gupta [10], who consider the variables 
zr ξξξ θ ,, related to  

,,,r uuu  zθ we now introduce Lagrangian displacement vector )zξ = ,,( r ξξξ θ

r  

).(,,, zrzzrr V
dr
diu

r
V

dr
driu ξσξξσξ θ

θθ −=⎟
⎠
⎞

⎜
⎝
⎛−=r iu σξ=                              (6) 

It can be readily shown that consistent with the meaning of ξ
r

 as the Lagrangian 
),,( zr uuuu θ=

r
 imdisplacement vector, the solenoidal character of plies the solenoidal 
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, thus 
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Substituting  Eq. (6) an

                                                                        (8c) 

d  Eq. (8a-8c) in  Eq. (3a-3c), we get 
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We rewrite equations (9a-9c) in the form 
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Here M, iG, and H  are indepe c . According to Barston [1 r product 
can be defined as 
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3.  Co usion 

e investigated the stability of MHD flow when both velocity components and magnetic 
s are azimuthal as well as axial. The observations are: 

 >><<+><= ξξξξξξ HMiGD ,,4),( 2

ncl
 
W
field component
 

(a) If >< ξξ H,  0,  then  D is a positive real quantity. The motion is accordingly 
oscillatory. Again if ( >< ξξ H, ) < 0,  but ,,),(4),( 2 ><><≥>< ξξξξξξ HMiG  
then D  is also real and the motion is oscillatory. 
 
(b)  But, if the inequality does not hold then 

><
±><−

=
ξξ

λξξ
M

iiGc
,2

, 2
1

, 0,,(4),( 2 <>><<+><= ξξξξξξ HMiG . That is D where 

λ−=D , and λ  being positive. Therefore, c ir icc ±= , where 

>>< ξξ
><

−=
ξξ

M,
  ,    and    iGcr 2

,
<

=
ξ M

ci ,2 ξ
λ2

1

.      

The motion will be stab f , and the motio e unstable if le i
ic n will b 0> 0<ic . 

 
We thus demonstrate that for a velocity field and imposed magnetic field as mentioned 
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