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Abstract 
 

In this paper, we propose new stratified Bayesian estimators of population proportion of a 

sensitive trait by adopting a mixture of alternative beta distributions as quantification of 

prior information in a stratified random sampling situation. Data were collected through 

Warner’s randomized response technique. To study the performance of the newly 

developed stratified estimators, mean squared error and absolute bias were used as 

performance criteria. The proposed estimators were compared with the existing one. We 

observed that the proposed estimators are more sensitive to responses than the existing one 

at various sample sizes respectively. 
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1.   Introduction 

 

Gathering information about a sensitive trait such as induced abortion, drug usage, tax 

evasion, examination malpractices etc. rampant in a human population is a complicated 

issue. Questioning directly from the respondents about exhibition of a stigmatized trait 

generally leads to doctoring of the true answers. This may be due to fear of social stigma 

or counter-attacks. However, information about the prevalence of such characteristic in 

the population is essential due to many socioeconomic reasons. To tackle this issue, 

Warner [1] introduced a clever technique of survey to gather information about sensitive 

characteristic by ensuring confidentiality and anonymity to the respondents. To date, 

many developments and variants of Warner’s Randomized Response Technique were 

developed by different researchers [2-8]. Interested readers may also see the articles [9-

12] for some more literatures on the topic. Once information on the sensitive 

characteristic(s) have been gathered using any of the cited techniques above, we then 
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proceed to the estimation stage in which we provide estimates of the corresponding 

population characteristic(s) based on our sample data. For this singular reason, we have 

classical framework which is quite popular but the Bayesian technique in this regard is 

inevitable as it takes care of the situations where parameter uncertainties are involved. 

This uncertainty is quantified in the form of a prior distribution which is further updated 

using our sample data for the said estimation purposes.  

 To make the Bayes estimator performs well, there is need to incorporate stratified 

random sampling technique into the Bayesian estimation framework. When researchers 

hold different beliefs in terms of different priors, a mixture of the prior distributions may 

be used that quite adequately represents the different beliefs held by the researchers. 

 Although there is enormous work on the Bayesian inference, in general the work on 

Bayesian analysis of randomized response techniques is limited. Researches that have 

been carried out on the Bayesian analysis of randomized response techniques include Bar-

Lev et al. [13], Migon and Tachibana [14], Oh [15], O’Hagan [16], Pitz [17], 

Unnikrishnan and Kunte [18], Winkler and Franklin [19], Adepetun and Adewara [20-23]. 

 Winkler and Franklin [19] used beta prior distribution and showed that it results in 

posterior distributions as a mixture of beta distributions. They argued that it is easy to 

explain the mixture posterior distribution but may be difficult to work with practically. To 

avoid this associated difficulty; instead of analysing the mixture posterior distribution they 

used approximations to simplify the analysis. They also pointed out that a more 

appropriate prior distribution, such as truncated beta distribution, could have been used 

but never pursued this technique. O’Hagan [16] proposed Bayesian linear estimator for 

estimating the proportion of the variable of interest. He compared with the Winkler and 

Franklin [19] study and concluded that Bayesian linear estimators are simple and robust in 

the sense that least prior specification is needed but a certain price has to be paid in the 

situations where prior specifications can be given in details. 

 Bar-Lev et al. [13] argued that in view of today’s computational facilities, the 

difficulties associated with using truncated beta distribution as prior are not strenuous. By 

specifying a truncated beta prior they presented a common conjugate prior structure and 

concluded that their approach is computationally attractive as compared to that proposed 

by Winkler and Franklin [19]. 

 In this paper, we propose new stratified Bayesian estimators through mixture of 

alternative beta priors to analyse posterior distribution with fully specified prior 

information instead of approximating the posterior or taking a truncated beta prior 

distribution as done respectively by Winkler and Franklin [19] and Bar-Lev et. al. [13]. 

 With Warner [1] Randomized Response Technique (RRT). The Randomized 

Response Technique introduced by Warner [1] has the goal of decreasing biasness in the 

parameter’s estimates and increasing the response rate. Warner’s technique consists of 

two complimentary questions   (do you belong to stigmatized group?) and    (do you not 

belong to stigmatized group?) to be answered on probability basis. Assuming simple 

random sampling with replacement the     chosen respondent is asked to choose a 

question (  or   ) and report “yes” if his/her real status tallies with chosen question and 
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“no” otherwise. Denoting the probability of selecting question   by    and population 

proportion of individuals with stigmatized characteristic by   the probability of “yes” for 

a particular respondent, denoted by 

  was given as: 
 

 (   )       (   )(   )                                                                                    ( ) 

Solving (1) for  , we have: 
 

  
  (   )

    
                                                                                                                 ( ) 

In the classical development, the maximum likelihood estimator (MLE) of   was given as 

 ̂   
 ̂  (   )

    
                                                                                                             ( ) 

where  ̂  
 

 
  and   is the number of yes responses in the sample of size  . 

The rest of the article is organized as follows. Section 2 provides the conventional 

technique using Warner [1] RRT in a Bayesian framework using stratified mixture of 

simple beta priors followed by the proposed stratified Bayesian estimators in section 3. 

Section 4 contains performance evaluation and comparison. Section 5 is the conclusion of 

our article.  

 

2. The Conventional Stratified Bayesian Technique of Estimation 

 

There may be different beliefs about the shape of the distribution of the parameter of the 

interest among different researchers. Participation of more than one researcher in a study 

can lead to disparities about the content of the prior information. Each may choose a 

different shape of the prior distribution of the parameter of interest. Sharing all of the 

available information among the researchers can help to reduce these disparities. In the 

long run, however, there may be no single values of the hyper parameters that satisfy 

them. In such situations, a mixture of the prior distributions may be used that quite 

satisfactorily represents different beliefs held by the researchers. 

 Assume the participation of M researchers with their own beliefs about the prior 

distribution. By representing them with   ( )   ( )     ( ), a mixture of prior 

distributions  ( )  ∑   
 
     ( ) can be defined such that ∑   

 
      where 

           are stratum weights associated with each prior distribution. 

Suppose h
th

 researcher has his belief about the prior distribution as  

  ( |     )  
     (   )    

 (     )
                                        ( ) 

Then a stratified mixed prior was given as  

 ( |       )   ∑  

 

   

(
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The stratified joint density distribution of   and X was given as  

 (   )   ∑[(
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The stratified marginal distribution of X was found by integrating the stratified joint 

density distribution with respect to   over the support of 0 and 1 as 
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Thus, the stratified posterior distribution of   given X was given as  
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Assuming the square error loss function, the stratified Bayes estimator was given by the 

mean of the stratified posterior distribution of    expressed as  

 ̂   

∑ [(
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Consequently, the bias as well as the mean square error of the stratified Bayes estimator 

was given as  

    ( ̂  )   ( ̂  )                                                                                                      (  ) 
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3. The Proposed Stratified Bayesian Techniques of Estimation 

 

Following study of the performance of the Bayesian estimator developed by Hussain et al. 

[24] in a stratified random sampling environment, we propose alternative stratified 

Bayesian estimators assuming both Kumaraswamy (KUMA) and the generalised (GLS) 

beta priors respectively. 

 

3.1. Estimation of   using Kumaraswamy prior 

 

Assume h
th

 researcher has his belief about the prior distribution as 

 ( |     )       
    (     )                                       (  ) 
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Then a stratified mixed prior can then be expressed as 

 ( |       )  ∑       
    (     )               
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Accordingly, the stratified joint density distribution of X and    is  
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For simplicity purpose, this can be re-written as 
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where           

The stratified marginal distribution of X after integrating the stratified joint density 

distribution above with respect to   between interval 0 and 1 is 
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The stratified posterior distribution of   given X is  
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Under square error loss, the proposed stratified Bayesian estimator of   assuming 

Kumaraswamy prior is  
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The bias as well as the mean square error of   ̂    is given as  

    ( ̂  )   ( ̂  )                                                                                                            (  ) 
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3.2. Estimation of   using the generalised beta prior 

 

 Let h
th

 researcher has his belief about the prior distribution as  
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  ( |        )  
   

      (     )    
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                                    (  ) 

We can, therefore, write our mixed prior as  

 ( |           )  ∑  
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Consequently, the stratified joint density distribution of X and   is written as 
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The stratified marginal distribution of X is thus  
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As a result, the stratified posterior distribution of   given X is  
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Under the square error loss, the proposed stratified Bayesian estimator assuming the 

generalised beta prior is obtained as  
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The bias and the mean square error (MSE) of  ̂   are defined respectively as 
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Remark: In this study, we limit the number of our researchers to 4, that is    . 
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4. Performance Evaluation and Comparisons 

 

Before moving towards formal comparisons of the proposed stratified Bayesian estimators 

with that of Hussain et al. [24], we point out some computational complexities associated 

with our study. From derivations in this work, it is clear that both the conventional and the 

proposed stratified Bayesian estimators involve enormous computation especially when 

the sample size and/or the number of “yes” responses are/is large. To deal with this 

computational complexity, we have written a program in R software (this program is 

available with the corresponding author). 

 We validated the performance of our proposed stratified Bayesian estimators in 

capturing responses from respondents through the life data obtained from the administered 

survey questionnaires on induced abortion under the same values of parameters in the 

estimators using sample sizes 25, 100 and 250 respectively. Few results in Tables were 

presented to reduce spaces. Concise evaluation performances of the proposed Bayesian 

estimators in a stratified random sampling scenario were also stated in the form of 

comments after tables for each sample size considered in this study respectively. 

 
Table 1. Mean square errors for Warner [1] RRT at                . 

 

  MSE Beta MSE Kuma MSE Gls 

0.1 1.12E-07 1.11E-06 1.50E-06 

0.2 3.28E-08 8.12E-07 1.15E-06 

0.3 7.55E-10 5.58E-07 8.43E-07 

0.4 1.59E-08 3.52E-07 5.84E-07 

0.5 7.83E-08 1.94E-07 3.73E-07 

0.6 1.88E-07 8.20E-08 2.09E-07 

0.7 3.45E-07 1.76E-08 9.21E-08 

0.8 5.48E-07 4.34E-10 2.25E-08 

0.9 8.00E-07 3.04E-08 1.37E-11 

 

Table 2. Absolute bias for Warner [1] RRT at                . 
 

  |BIAS|Beta |BIAS|Kuma |BIAS|Gls 

0.1 0.217891 0.686433 0.797589 

0.2 0.117891 0.586433 0.697589 

0.3 0.017891 0.486433 0.597589 

0.4 0.082109 0.386433 0.497589 

0.5 0.182109 0.286433 0.397589 

0.6 0.282109 0.186433 0.297589 

0.7 0.382109 0.086433 0.197589 

0.8 0.482109 0.013567 0.097589 

0.9 0.582109 0.113567 0.002411 

 

Table 3. Mean square errors for Warner [1] RRT at                . 
 

  MSE Beta MSE Kuma MSE Gls 

0.1 1.25E-07 1.01E-06 1.45E-06 

0.2 3.99E-08 7.22E-07 1.10E-06 

0.3 2.13E-09 4.85E-07 8.01E-07 



256 New Stratified Bayesian Estimators  

 

  MSE Beta MSE Kuma MSE Gls 

0.4 1.15E-08 2.94E-07 5.50E-07 

0.5 6.82E-08 1.51E-07 3.46E-07 

0.6 1.72E-07 5.54E-08 1.89E-07 

0.7 3.23E-07 6.67E-09 7.88E-08 

0.8 5.21E-07 5.18E-09 1.62E-08 

0.9 7.67E-07 5.09E-08 7.02E-10 

 

Table 4. Absolute bias for Warner [1] RRT at                . 
 

  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.1 0.230050 0.653170 0.782749 

0.2 0.130050 0.553170 0.682749 

0.3 0.030050 0.453170 0.582749 

0.4 0.069950 0.353170 0.482749 

0.5 0.169950 0.253170 0.382749 

0.6 0.269950 0.153170 0.282749 

0.7 0.369950 0.053170 0.182749 

0.8 0.469950 0.046830 0.082749 

0.9 0.569950 0.146830 0.017251 

 

Comment: From tables 1 to 4, when                 and    , the proposed 

stratified Bayesian estimators are more efficient in capturing sensitive information than 

the conventional one when        The proposed stratified generalised beta estimator is 

optimally efficient while compared with other estimators as   approaches one. 

 
Table 5. Mean square errors for Warner [1] RRT at                 . 

 

  MSE Beta MSE Kuma MSE Gls 

0.1 5.36E-26 6.16E-25 9.43E-25 

0.2 1.12E-26 4.35E-25 7.15E-25 

0.3 3.80E-28 2.85E-25 5.19E-25 

0.4 2.10E-26 1.67E-25 3.54E-25 

0.5 7.32E-26 8.00E-26 2.20E-25 

0.6 1.57E-25 2.47E-26 1.18E-25 

0.7 2.72E-25 1.01E-27 4.77E-26 

0.8 4.19E-25 8.78E-27 8.62E-27 

0.9 5.97E-25 4.80E-26 1.07E-27 

 

Table 6. Absolute bias for Warner [1] RRT at                 . 
 

  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.1 0.184457 0.625352 0.773992 

0.2 0.084457 0.525352 0.673992 

0.3 0.015543 0.425352 0.573992 

0.4 0.115543 0.325352 0.473992 

0.5 0.215543 0.225352 0.373992 

0.6 0.315543 0.125352 0.273992 

0.7 0.415543 0.025352 0.173992 

0.8 0.515543 0.074648 0.073992 

0.9 0.615543 0.174648 0.026008 
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Table 7. Mean square errors for Warner [1] RRT at                 . 

 

  MSE Beta MSE Kuma MSE Gls 

0.1 7.75E-26 3.85E-25 6.30E-25 

0.2 2.34E-26 2.45E-25 4.47E-25 

0.3 7.49E-28 1.36E-25 2.95E-25 

0.4 9.63E-27 5.95E-26 1.74E-25 

0.5 5.00E-26 1.40E-26 8.52E-26 

0.6 1.22E-25 5.03E-29 2.77E-26 

0.7 2.25E-25 1.76E-26 1.67E-27 

0.8 3.60E-25 6.66E-26 7.16E-27 

0.9 5.26E-25 1.47E-25 4.41E-26 

 

Table 8. Absolute bias for Warner [1] RRT at                 . 
 

  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.1 0.221811 0.494350 0.632591 

0.2 0.121811 0.394350 0.532591 

0.3 0.021811 0.294350 0.432591 

0.4 0.078189 0.194350 0.332591 

0.5 0.178189 0.094350 0.232591 

0.6 0.278189 0.005650 0.132591 

0.7 0.378189 0.105650 0.032591 

0.8 0.478189 0.205650 0.067409 

0.9 0.578189 0.305650 0.167409 

 

Comment: From tables 5 to 8, when                  and    , the proposed 

stratified Bayesian estimators are more efficient in capturing sensitive information from 

respondents than the conventional stratified simple beta estimator proposed by Hussain et 

al. [24] when        The proposed stratified generalised beta estimator is optimally 

efficient as   approaches one. 

 
Table 9. Mean square errors for Warner [1] RRT at                  . 

 

  MSE Beta MSE Kuma MSE Gls 

0.1 9.18E-62 1.09E-60 2.09E-60 

0.2 6.91E-63 6.80E-61 1.50E-60 

0.3 1.87E-62 3.66E-61 1.01E-60 

0.4 1.27E-61 1.48E-61 6.18E-61 

0.5 3.32E-61 2.72E-62 3.20E-61 

0.6 6.34E-61 3.00E-63 1.20E-61 

0.7 1.03E-60 7.54E-62 1.60E-62 

0.8 1.53E-60 2.45E-61 8.74E-63 

0.9 2.12E-60 5.10E-61 9.82E-62 

 

Table 10. Absolute bias for Warner [1] RRT at                  . 
 

  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.1 0.137809 0.475069 0.657476 

0.2 0.037809 0.375069 0.557476 

0.3 0.062191 0.275069 0.457476 
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  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.4 0.162191 0.175069 0.357476 

0.5 0.262191 0.075069 0.257476 

0.6 0.362191 0.024931 0.157476 

0.7 0.462191 0.124931 0.057476 

0.8 0.562191 0.224931 0.042524 

0.9 0.662191 0.324931 0.142524 

 

Table 11. Mean square errors for Warner [1] RRT at                  . 
 

  MSE Beta MSE Kuma MSE Gls 

0.1 2.15E-61 6.09E-61 9.12E-61 

0.2 5.94E-62 3.14E-61 5.40E-61 

0.3 5.66E-64 1.16E-61 2.65E-61 

0.4 3.84E-62 1.45E-62 8.72E-62 

0.5 1.73E-61 9.85E-63 5.69E-63 

0.6 4.04E-61 1.02E-61 2.09E-62 

0.7 7.32E-61 2.90E-61 1.33E-61 

0.8 1.16E-60 5.76E-61 3.41E-61 

0.9 1.68E-60 9.58E-61 6.46E-61 

 

Table 12. Absolute bias for Warner [1] RRT at                  . 
 

  |BIAS|Beta |BIAS| Kuma |BIAS| Gls 

0.1 0.210818 0.354850 0.434300 

0.2 0.110818 0.254850 0.334300 

0.3 0.010818 0.154850 0.234300 

0.4 0.089182 0.054850 0.134300 

0.5 0.189182 0.045150 0.034300 

0.6 0.289182 0.145150 0.065700 

0.7 0.389182 0.245150 0.165700 

0.8 0.489182 0.345150 0.265700 

0.9 0.589182 0.445150 0.365700 

 

Comment: From tables 9 to 12, when                   and    , the proposed 

stratified Bayesian estimators are better than the existing one in capturing sensitive 

information from respondents when        The proposed Bayesian estimator which 

assumed stratified generalised beta prior is the best as   tends to unity. 

 

5. Conclusion 

 

This article has taken up the issue of estimating proportion of a stigmatized characteristic 

using Randomized Response Technique in Bayesian setting under stratified random 

sampling procedure. To quantify prior information, we have considered completely 

specified mixture priors in the form of Beta distribution(s). The proposed stratified 

Bayesian estimators have been evaluated based on absolute bias and mean squared error 

and their comparisons have been made with the corresponding existing stratified simple 

beta estimator proposed by Hussain et al. [24]. It was observed that for the practicable 
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choices of the design parameter  , the proposed stratified Bayesian estimators perform 

reasonably better in capturing information from respondents in survey which asks 

sensitive questions than the existing one over a wide range of population proportion  . It 

has also been observed that Bayesian estimators are bounded by 0 and 1 even in case of 

extreme realization of “yes” responses under the stratified random sampling design in 

mixture prior scenarios. 

 Finally, it can be concluded that whenever prior information about the likely values 

of the parameter of interest is available, we should opt for Bayesian approach ignoring the 

computational difficulty in the presence of today’s computational facilities. 
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