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Abstract 
 

In this paper, generalized size-biased Poisson-Lindley distribution (GSBPLD) which 

includes size-biased Poisson-Lindley distribution (SBPLD) as particular case, has been 

proposed and studied. Its moments based measures including coefficients of variation, 

skewness, kurtosis, and index of dispersion have been derived and their nature and 

behavior have been discussed with varying values of the parameters. The estimation of 

its parameter has been discussed using maximum likelihood estimation. Some 

applications of the proposed distribution have been explained through datasets relating 

to size distribution of freely-forming and the goodness of fit has been found 

satisfactory over SBPLD and size-biased Poisson distribution (SBPD). 
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1.   Introduction 

 

A size-biased Poisson Lindley distribution (SBPLD), introduced by Ghitany and Al-

Mutairi [1], having parameter  is defined by its probability mass function (pmf) 
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The first four moments about origin and the variance of the SBPLD are given by 
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A detailed study on SBPLD and its applications to model data relating to 

thunderstorms are done by Shanker et al. [2] and found that SBPLD is a suitable 

model for thunderstorms data. It would be noted that SBPLD is a simple size-biased 

version of Poisson-Lindley distribution (PLD) [3] having pmf 
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Sankaran [3] has obtained its moments, discussed some of statistical properties, 

estimation of parameter and applications to model count data.  A detailed and critical 

study on applications of PLD for count data relating to biological sciences has been 

done by Shanker and Hagos [4] and found that PLD gives much closer fit than 

Poisson distribution. 

 Note that the PLD is a Poisson mixture of Lindley distribution [5] and defined by 

its probability density function (pdf) 
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                              (1.3) 

 

Ghitany et al. [6] discussed statistical properties including moments based 

coefficients, hazard rate function, mean residual life function, mean deviations, 

stochastic ordering, Renyi entropy measure, order statistics, Bonferroni and Lorenz 

curves, stress- strength reliability, along with estimation of parameter and application 

to model waiting time data in a bank. Shanker et al. [7] have critical and comparative 

study on applications of Lindley and exponential distributions for modeling lifetime 

data from biological sciences and engineering and observed that there are many 

lifetime data where exponential distribution gives better fit than Lindley distribution.   

 The generalized Poisson-Lindley distribution (GPLD) [8]  having parameters  

and α is defined by its pmf 
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  (1.4) 

The first four moments about origin and the variance of GPLD obtained by 

Mahmoudi and Zakerzadeh [8] are given by  

 

  

 
1

1 1

1

 


 

 
 


 



R. Shanker et al. J. Sci. Res. 10 (2), 145-157 (2018) 147 

 

    
 

2 2 2

2 2

2 1 3 2

1

     


 

     
 


 

      
 

3 2 2 3 2 3 2

3 3

3 4 1 6 11 6 6 11 6

1

          


 

          
 


            

     

 
 

4 2 3 3 2 2 4 3 2

4 3 2

4 4

7 8 1 6 25 33 14 12 47 72 36

10 35 50 24

1

            

   


 

           

    
 



   

        

 

3 2

2 22

3 1 3 1 1

1

     


 

     




      

Mahmoudi and Zakerzadeh [8] have obtained its moments and discussed its 

statistical properties, estimation of parameters and applications to model count data. 

Note that GPLD is a Poisson mixture of two-parameter generalized Lindley 

distribution (GLD), proposed by Zakerzadeh and Dolati [9], having parameters  and 

α defined by its pdf 
 

  
 

 
1 1

2 ; , ; 0, 0, 0
1 1

xx
f x x e x

 


    
 

 
    

  
                  (1.5) 

In fact the distribution in (1.5) is a particular case (β=1) of a three parameter 

generalized Lindley distribution (GLD) [9] having pdf 
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   (1.6) 

Lindley distribution, gamma distribution and weighted Lindley distribution (WLD) 

proposed by Ghitany et al. [6] are particular cases of (1.6) at (α = β =1), (β = 0) and 

((β = α), respectively. Shanker [10] obtained various raw moments and central 

moments of GLD and discussed properties based on moments including coefficient of 

variation, skewness, kurtosis and index of dispersion of GLD and its comparative 

study with generalized gamma distribution (GGD) introduced by Stacy [11] to model 

various lifetime data from engineering and biomedical sciences and concluded that in 

many cases GGD gives much better fit than GLD. A detailed comparative study on 

modelling of real lifetime data from engineering and biomedical sciences using GLD 

and GGD have been done by Shanker and Shukla [12] and found that there are several 

lifetime data where GGD gives much closer fit than GLD. 

Suppose a random variable X  has probability distribution P0 (x; ); x=0, 1, 2, 

… 0.. If sample units are weighted or selected with probability proportional to x
α
, 

then the corresponding size-biased distribution of order α is defined by its probability 

mass function 
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   . When 1  , (1.7) is known as simple size-

biased distribution and is applicable for size-biased sampling and for α = 2, (1.7) is 

known as area-biased distribution and is applicable for area-biased sampling. Size-

biased distributions are a particular class of weighted distributions which arise 

naturally in practice when observations from a sample are recorded with probability 

proportional to some measure of unit size. In field applications, size-biased 

distributions can arise either because individuals are sampled with unequal probability 

by design or because of unequal detection probability. Size-biased distributions come 

into play when organisms occur in groups, and group size influences the probability 

of detection. Fisher [13] firstly introduced these distributions to model ascertainment 

biases which were later formalized by Rao [14] in a unifying theory for problems 

where the observations fall in non-experimental, non-replicated and non-random 

categories. Size-biased distributions have applications in environmental science, 

econometrics, social science, biomedical science, human demography, ecology, 

geology, forestry etc.  

 The main motivation of this paper is to introduce a generalized size-biased 

Poisson-Lindley distribution (GSBPLD), a size-biased version of generalized 

Poisson-Lindley distribution (GPLD), to model count data excluding zero counts 

because two-parameter GSBPLD have enough flexibility than one parameter SBPLD. 

Various moments and moments based measures have been obtained. The nature and 

behavior of coefficients of variation, skewness, kurtosis, index of dispersion have 

been explained graphically. Maximum likelihood estimation has been discussed for 

estimating the parameters of the distribution. Applications and the goodness of fit of 

the proposed distribution have been explained through datasets relating to size 

distribution of freely-forming small group and compared with other size-biased 

distributions. 

 

2. Generalized Size-Biased Poisson-Lindley Distribution 

 

Using pmf (1.4) and its mean in (1.7), the pmf of generalized size-biased Poisson-

Lindley distribution (GSBPLD) can be obtained as 
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The graphs of the pmf of GSBPLD for varying values of parameters  and α are 

shown in Fig. 1. 
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Fig. 1. Graphs of pmf of GSBPLD for varying values of parameters  and α. 

Since it is difficult and complicated to obtain the moments of GSBPLD directly, an 

attempt has been made to derive the pmf of GSBPLD as a size-biased Poisson 

mixture of size-biased generalized Lindley distribution (SBGLD) which is very much 

helpful in deriving the moments. Suppose the parameter λ of size-biased Poisson 

distribution (SBPD) with pmf 
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follows size-biased generalized Lindley distribution (SBGLD)  with pdf 
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Thus the SBPD mixture of GSBPLD can be obtained as 
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which is the pmf of GSBPLD obtained in (2.1). 

 

3. Moments, Skewness, Kurtosis and Index of Dispersion 

 

Using (2.4), the rth factorial moment about origin of the GSBPLD (2.1) can be 

obtained as 
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Taking x r y  , we get 
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Using gamma integral and a little algebraic simplification, the rth factorial moment 

about origin of GSBPLD (2.1) can be obtained as 
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Taking 1,2,3,and 4r  in (3.1), the first four factorial moments about origin of 

GSBPLD (2.1) can be obtained  
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Now using the relationship between factorial moments about origin and the moments 

about origin, the first four moments about origin of GSBPLD (2.1) can be obtained as 
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 between moments 

about mean and the moments about origin, the moments about mean of the GSBPLD 

(2.1) can be obtained as 

 

    
       

 

2 3 2 2 3 2 3 2

2 22

1 3 2 1 3 10 9 2 4 5 2

1

            


  

           


 

                                             

  

     

   

 
 

3 5 2 2 4 3 2 3

4 3 2 2 4 3 2

4 3 2

3 33

1 2 3 5 2 14 37 14 5

16 59 66 25 2 9 39 57 33 6

2 10 18 14 4

1

          

         

   


  

        
 
 
          
 
      

 

      



152 A Generalized Size-Biased Poisson-Lindley Distribution and Its Applications 

 

      

     

 

 

 

4 7 3 2 3 6 4 3 2 2 5

5 4 3 2 4

6 5 4 3 2 3

6 5 4 3 2 2

6 5 4 3 2

4

1 3 17 19 5 18 100 157 84 9

45 286 594 487 141 7

60 443 1136 1256 602 101 2

45 379 1140 1574 1045 303 26

18 168 576 948 798

             

     

      

      

    



         

     

      

      

    



 

 
 

6 5 4 3 2

44

324 48

3 30 114 216 219 114 24

1

 

     

  

 
 
 
 
 
 
 
 
 

  
 
        

 

                

The coefficient of variation (C. V), coefficient of Skewness  1  and the coefficient 

of Kurtosis  2  and index of dispersion (γ)  of the GSBPLD (2.1) and are thus 

obtained as  
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Nature and behavior of coefficient of variation, coefficient of skewness, coefficient of 

kurtosis and index of dispersion of GSBPLD for varying values of parameters  and α 

are shown in Fig. 2. 
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Fig. 2: Coefficient of variation, coefficient of skewness, coefficient of 

kurtosis and index of dispersion of GSBPLD for varying values of 

parameters and   

 

 

 

 

 

 

 

 

 
 

Fig. 2. Coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of 

dispersion of GSBPLD for varying values of parameters  and α. 

 
4. Maximum Likelihood Estimation 

 

Let 
1 2, ,..., nx x x be a random sample of size n from the GSBPLD (2.1) and let fx be 

the observed frequency in the sample corresponding to X = x (x =1, 2, 3, …k) such 

that 
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k

x
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f n


 , where k is the largest observed value having non-zero frequency. 

The likelihood function L of the GSBPLD (2.1) is given by 
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The log likelihood function can be obtained as 
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The maximum likelihood estimates  ˆ ˆ,  of  ,   of GSBPLD (2.2) is the solutions 

of the following log likelihood equations  
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  where    ln
d

d
  


   is the digamma function. 

These two log likelihood equations do not seem to be solved directly. However, the 

Fisher’s scoring method can be applied to solve these equations. We have 
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where    
d

d
   


   is the trigamma function.  

 The maximum likelihood estimates  ˆ ˆ,  of  ,   of GSBPLD (2.2) is the 

solution of the following equations    
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Where 0 and α0 are the initial values of  and α, respectively. These equations are 

solved iteratively till sufficiently close values of  and ̂  are obtained. 

 

5. Applications 

 

As we know that size-biased distributions are very much useful for modeling data 

relating to situation when organisms occur in groups and group size influences the 

probability of detection. In this section an attempt has been made to test the goodness 

of fit of GSBPLD with data relating to the size distribution of freely-forming small 

groups at various public places, available in James [15] and Coleman and James [16]. 
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Based on the values of chi-square  2 , p-value, -2logL  and AIC (Akaike 

Information Criterion), it is obvious that GSBPLD gives much closer fit than SBPD 

and SBPLD and hence it can be considered an important distribution for modeling 

size distribution of freely-forming small groups at various public places and other 

data which structurally excludes zero counts. Note that AIC has been calculated using 

the formula AIC = - 2logL + 2k, where k is the number of parameters involved in the 

distribution.  

 
Table 1. Pedestrians-Eugene, Spring, Morning. 

 

Group size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD GSBPLD 

1 

2 

3 

4 

5 

6 

1486 

694 

195 

37 

10 

1 

1452.4 

743.3 

190.2 

32.4 

4.1 

0.6 

1532.5 

630.6 

191.9 

51.3 

12.8 

3.9 

1486.1 

694.5 

192.4 

41.1 

7.5 

1.5 

Total 2423 2423.0 2423.0 2423.0 

ML Estimate  ˆ 0.5118   ˆ 4.5082   
ˆ 10.7002   

ˆ 4.3729   

2   7.370 13.760 0.880 

d.f.  2 3 2 

p-value  0.0251 0.003 0.644 

2log L   10445.34 4622.36 4607.70 

AIC  10447.34 4624.36 4611.70 
 

 
Table 2. Play Groups-Eugene, Spring, Public Playground A. 

  

Group size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD GSBPLD 

1 

2 

3 

4 

5 

306 

132 

47 

10 

2 

292.2 

155.2 

41.2 

7.3 

1.1 

309.4 

131.2 

41.1 

11.3 

4.0 

303.7 

138.9 

41.4 

10.1 

2.9 

Total 497 497.0 497.0 497.0 

ML Estimate  ˆ 0.5312   ˆ 4.3548   
ˆ 6.4729   

ˆ 2.2561   
2   6.479 0.932 1.194 

d.f.  2 2 1 

p-value  0.039 0.6281 0.2753 

2log L   2142.03 971.86 970.90 

AIC  2144.03 973.86 974.90 
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Table 3. Play Groups-Eugene, Spring, Public Playground D. 
 

Group size 
Observed 

frequency 

Expected frequency 

SBPD SBPLD GSBPLD 

1 

2 

3 

4 

5 

6 

305 

144 

50 

5 

2 

1 

296.5.2 

159.0 

42.6 

7.6 

1.0 

0.3 

314.4 

134.4 

42.5 

11.8 

3.1 

0.8 

304.2 

148.0 

42.9 

9.6 

1.8 

0.5 

Total 507 507.0 507.0 507.0 

ML Estimate  ˆ 0.5365   ˆ 4.3179   
ˆ 9.9326   

ˆ 4.2180   
2   3.035 6.415 2.56 

d.f.  2 2 1 

p-value  0.219 0.040 0.1095 

2log L   2376.75 993.10 989.93 

AIC  2378.75 995.1 993.93 

  
 The fitted probability plots of the distributions for the considered distributions 

has been shown in figure 3 and it is obvious that GSBPLD gives much closer fit than 

SBPD and SBPLD. 

 
Fig. 3. Fitted probability plot of distributions for table-1, 2, 3 respectively. 
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6. Conclusion 

 

A generalized size-biased Poisson-Lindley distribution (GSBPLD), which includes 

size-biased Poisson-Lindley distribution (SBPLD) as particular case, has been 

suggested and detailed study has been conducted about its nature and behavior for 

varying values of parameters.  The moments based measures including coefficients of 

variation, skewness, kurtosis, and index of dispersion have been derived and their 

nature and behavior have been explained graphically with varying values of the 

parameters. Maximum likelihood estimation has been discussed for estimating its 

parameters. Applications and goodness of fit of the distribution have been explained 

through datasets relating to size distribution of freely-forming small group and fit has 

been found satisfactory over SBPD and SBPLD. 
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