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Abstract 

 

We have studied Wigner rotations of different types of Lorentz Transformations 

according to the nature of movement of one inertial frame relative to the other inertial 

frame. When the motion is along any arbitrary direction then we can find the formulae 

for Wigner rotations using the velocity addition formulae for most general, mixed 

number, quaternion and geometric product Lorentz transformations. Finally we have 

used simulated data for applying the Wigner rotation formula in pion decay chain and 

concluded the result. 
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1. Introduction 

 

The composition of two Lorentz boosts when they are not collinear results a Lorentz 

transformation [LT] that is not a pure boost but is the composition of a boost and a 

rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner 

rotation. The rotation was discovered by Thomas in 1926 and derived by Wigner in 

1939 [1]. If a sequence of non-collinear Lorentz transformations returns an object to its 

initial velocity, then the sequence of Wigner rotations can combine to produce a net 

rotation called the Thomas precession [2]. The Thomas effect in nuclear spectroscopy 

is mentioned in Jackson’s book on electrodynamics [3]. In fact, the Wigner rotation is 

the key issue in many branches of physics involving LTs [4]. 

The Wigner rotation appears in physical processes whose underlying mathematical 

language includes the Lorentz group; Berry’s phase is an example of it [5, 6]. This 

branch of physics deals with a physical system which gains a phase angle after coming 
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back to the original state at the end of a series of transformations. If the 

transformations include those of a group isomorphic to the Lorentz group, the Wigner 

rotation plays a vital role in that case [7]. 

In recent times the Lorentz group has become an important scientific language in 

both quantum and classical optics. The theory of squeezed states is a representation of 

the Lorentz group [8, 9]. Optical instruments are everywhere in modern physics based 

on classical ray optics. It is enjoyable to observe that the Lorentz group is the essential 

scientific language for ray optics, including polarization optics [10], interferometers 

[11], lens optics [12,13], laser cavities [14] and multi-layer optics [15]. 

It is possible to perform mathematical operations of the Lorentz group by arranging 

optical instruments. For instance, the group contraction is one of the most 

sophisticated operations in the Lorentz group. Since there are many mathematical 

operations in Quantum field theory and optical sciences corresponding to LTs, the 

Wigner rotation becomes one of the important issues in classical and quantum optics. 

There are different types of LTs. At first we have discussed these LTs. 

 

1.1. Special Lorentz transformation 

 

Let us consider two inertial frames of reference S and S

, where the frame S is at rest 

and the frame S
 
is moving along the X-axis with velocity U with respect to the S 

frame. The space and time co-ordinates of S and S

are (x, y, z, t) and (x


, y


, z


, t


) 

respectively. The relation between the co-ordinates of S and S

 is called the special 

Lorentz transformation (SLT), can be written as [16] 
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                        S                     S            U  

                                            X                      X 
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Fig. 1. Special Lorentz transformation 
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and the inverse SLT can be written as
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1.2. Most general Lorentz transformation 

 

When the motion of the moving frame is along any arbitrary direction instead of  X-

axis , i.e., the velocity U


 has three components Ux , Uy and Uz  then the relation 

between the space and time co-ordinates of S and Sʹ is called the most general Lorentz 

transformation(MGLT), can be written as [17] 

 

                                                  

                              Y                      Y                  U


 

                               S            X       S                         X    

                Z                       Z   

Fig . 2. Most general Lorentz transformation 
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and the inverse MGLT can be written as 
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1. 3. Mixed number Lorentz transformation 

 

Consider same case as MGLT, then using the mixed product [18-

20] BAiBABA


 . , the mixed number Lorentz transformation [21] (MNLT) can 

be written as 

)5()(

).(

UriUtrr

Urtt










          

and the inverse MNLT can be written as 
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1.4. Quaternion Lorentz transformation 

 

Again, consider same case as MGLT, then using the quaternion product [22-24] 

BABABA


 .  the quaternion Lorentz transformation (QLT) [25] can be written as    

 

)7()(

).(

UrUtrr

Urtt











            

 

and the inverse QLT, can be written as 
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1.5. Geometric Product Lorentz transformation 

 

Again, consider same case as MGLT, then using the geometric product of two vectors 

[26-28]  BABABA


 .  the geometric product Lorentz transformation [21] (GPLT) 

can be written as 

 

)9()(

).(

UrUtrr
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and the inverse GPLT can be written as 
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2. Wigner Rotation 

 

Consider the pion decay chain  e , where pion (π) is moving with velocity 

U


with respect to lab frame S, muon (μ) is moving with velocity V


 with respect to π, 

electron (e) is moving with velocity W


with respect to μ then we want to find the 

velocity of electron with respect to lab frame in different types of LTs. There are two 

ways to get the velocity of electron with respect to lab frame   WVU


 and 

 WVU


 . The angle between these two velocity vectors is called Wigner rotation, 

where   denotes the Lorentz sum. 
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Fig. 3. Wigner rotation of Lorentz transformations. 

 

2.1.  Wigner Rotation for special Lorentz transformation 

 

SLT is one dimensional. The velocity of the moving frame is along x-axis. So there is 

no Wigner rotation for SLT. 

 

2.2. Wigner Rotation for most general Lorentz transformation 

 

If W 


be the velocity of muon with respect to lab frame then according to the velocity 

addition formula for the MGLT [21] we can write 
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Now, if muon moves with velocity W

 with respect to lab frame and electron moves 

with velocity W


respect to muon then according to the velocity addition formula for 

MGLT [21] we can write 
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Again, from muon and electron according to the velocity addition formula for MGLT 

[21] the resultant velocity of V


and W


can be written as 
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Finally, if electron moves with velocity W

  with respect to pion then the resultant 

velocity of electron with respect to lab frame can be written as 
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Specifically to illustrate Wigner rotation we have used simulated data for velocity 

vectors in unit of c, defined as  

 

   0.0,2.0,5.00,,  yx uuU


velocity of pion relative to lab frame; 

   0.0,5.0,3.00,,  yx vvV


velocity of muon relative to pion ; 

   ,0.0,2.0,4.00,,  yx wwW


velocity of electron relative to muon. 

 

The corresponding γ factors are as follows: 
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From equation (11) and (12) we have    AWVU
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where

    933534.549697.07545323.0,ˆ0ˆ549697.0ˆ7545323.0
22
 AkjiA



 

and   

    9325166.5337916.07646265.0,ˆ0ˆ5337916.0ˆ7646265.0
22
 BkjiB



 

870359032.. BA


 
Hence,   01 15.199979.cos  

Wigner  

Again let, 
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           0.0,3.0,6.00,,,0.0,5.0,2.00,,,0.0,3.0,4.00,,

&0.0,3.0,5.00,,,0.0,4.0,2.00,,,0.0,2.0,5.00,,
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be two sets of velocity vectors of pion decay chain  e ,  as Fig. 3 then using 

equations (11),(12),(13) and (14) we have the velocity vectors of electron relative to 

lab frame,   WVU


 and  WVU


  are  
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796143.0

,

0

547582.0

755839.0
and 

































0

653219.0

69576.0

,

0

668553.0

68265.0
respectively. 

 

Using similar process as previous one we have the Wigner rotations in these cases 

  94.59946244.0cos 1  

Wigner (App.) and   2.1999778.0cos 1  

Wigner (App.)  

respectively. 

 

2.3. Wigner Rotation of mixed number Lorentz transformation  

 

If W 


be the velocity of muon with respect to lab frame then according to the velocity 

addition formula for the MNLT [21] we can write 
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Now using similar process as MGLT the velocity vectors of electron relative to lab 

frame for MNLT as Fig. 3, we have  
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Specifically to illustrate Wigner rotation for MNLT velocity vectors are defined as  
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be three sets of velocity vectors of pion decay chain  e ,  as Fig. 3 then using 

equations (15), (16) and (17) we have the velocity vectors of electron relative to lab 

frame are   WVU


 and  WVU


  are  
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Using similar process as MGLT we have the Wigner rotations of each case 

  01cos 1  

Wigner  

 

2.4. Wigner Rotation of Quaternion Lorentz transformation 

 

If W 


be the velocity of muon with respect to lab frame then according to the 

velocity addition formula for QLT [29] we can write 
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Now using similar process as MGLT the velocity vectors of electron relative to lab 

frame S for QLTas Fig. 3, we have  
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Specifically to illustrate Wigner rotation for QLT velocity vectors are defined as  
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be three sets of velocity vectors of pion decay chain  e ,  as Fig. 3 then using 

equations (18), (19) and (20) we have the velocity vectors of electron  relative to lab 

frame are   WVU


 and  WVU


 ; 
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respectively. 

 

Using similar process as MGLT we have the Wigner rotations of each case 

  01cos 1  

Wigner  

 

2.5. Wigner Rotation of Geometric product Lorentz transformation 

 

If W 


be the velocity of muon with respect to lab frame then according to the velocity 

addition formula for GPLT [21] we can write 

)21(
.1 VU

UVVU
VUW 









                                

Now using similar process the velocity vectors of electron relative to lab frame for 

GPLTas Fig. 3, we have  
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Specifically to illustrate Wigner rotations for GPLTvelocity vectors are defined as  
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be three sets of velocity vectors of pion decay chain   e ,  as Fig. 3 then 

using equations (21), (22) and (23) we have the velocity vectors of electron  relative to 

lab frame are   WVU


 and  WVU


 ; 
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708196.0
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7497073.0
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,
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6.0

738.0

 
respectively. 

 

Using similar process as MGLT we have the Wigner rotations of the above cases are 

     2.299259.cos,74.09999171.cos 11  

WignerWigner 

  9.199945.0cos& 1  

Wigner respectively. 

 

3. Comparison of the Study 

 

3.1. Comparison of Wigner Rotations of special, most general, mixed number, 

quaternion and geometric product Lorentz transformations 
 

Names of  

Lorentz 

transformations 

Wigner Rotation 

   0,2.,5.0,,  yx uuU


   0,5.,3.0,,  yx vvV


   0,2,.4.0,,  yx wwW


 

Wigner Rotation 

   0,2.,5.0,,  yx uuU


   0,4.,2.0,,  yx vvV


   ,0,3,.5.0,,  yx wwW


 

Wigner Rotation 

   0,3,4.0,,  yx uuU


   0,5.,2.0,,  yx vvV


   ,0,3,.6.0,,  yx wwW


 

SLT Not applicable Not applicable Not applicable 

MGLT 1.15° 5.94° 1.2° 

MNLT 0° 0° 0° 

QLT 0° 0° 0° 

GPLT 0.74° 2.2° 1.9° 

 

4. Conclusion 

We have discussed the Wigner rotations for different types of LTs. In the case of 

MGLT and GPLT we have found Wigner rotations but the values are different in each 
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case. In the case of MNLT and QLT, there is no Wigner Rotation. We can apply our 

results in the study of hidden magnetic forces manifest in some problems of 

Electromagnetism, Spin-orbit interaction of electron with nucleus in an atom in 

Quantum Mechanics, study of the quantized electromagnetic field in phase space and 

of the interaction between atoms and photons in cavities in quantum optics. 
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