

Available Online

JOURNAL OF SCIENTIFIC RESEARCH www.banglaiol.info/index.php/JSR

J. Sci. Res. 1 (3), 551-557 (2009)

Short Communication

On Minimally Nonouterplanarity of the Semi Total (Point) Graph of a Graph

V. R. Kulli¹ and K. M. Niranjan²

¹Department of Mathematics, Gulbarga-585106, Karnataka, India

²Department of Computer Science and Engineering, S.J.M.I.T, NH4 Bye Pass Road, Chitradurga-577502, Karnataka, India

Received 17 March 2009, accepted in final revised form 4 July 2009

Abstract

We present here characterizations of graphs whose semi total (point) graphs are outerplanar and *k*-minimally nonouterplanar (k = 1, 2 or 3).

Keywords: Semi total (Point); Minimally nonouterplanarity; Outerplanar; Block.

© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

DOI: 10.3329/jsr.v1i3.2578 J. Sci. Res. 1 (3), 551-557 (2009)

1. Introduction

All graphs considered are finite, undirected and without loops or multiple lines. For standard terminology and notations we follow Harary [1]. The semi total (point) graph $T_2(G)$ of a graph G is the graph whose point set is $V(G) \cup X(G)$ where two points are adjacent if and only if (i) they are adjacent points of G, or (ii) one is a point and the other is a line of G incident with it. This concept was introduced by Sampathkumar and Chikkodimath [2, 3]. In 1975 Kulli [4] introduced the concept minimally nonouterplanar graph. The inner point number i(G) of a planar graph G is the minimum possible number of points not belonging to the boundary of the exterior region in any embedding of G in the plane. Obviously G is outerplanar if and only if i(G)=0. A graph G is minimally nonouterplanar if i(G)=1, and G is k-minimally ($k \ge 2$) nonouterplanar if i(G)=k.

Definition 1.1: A block of a graph *G* is a maximal nonseperable subgraph.

Definition 1.2: A line joining two nonadjacent points of a cycle is called a chord of the cycle.

² Corresponding author: niru_km@yahoo.com

Definition 1.3: Let C be a cycle with $p \ge 4$ points. If a path of length two joins two nonadjacent points of C then it is called a theta⁺ block.

The following will be useful in the proof of our results:

Theorem A [2]: For a graph G, let $T_2(G)$ be the semi total (point) graph of G. Then $T_2(G)$ is planar if and only if G is planar.

2. Prerequisites

We first prove two lemmas which are useful to prove our results.

Lemma 1: If G is a cycle with $n(n \ge 1)$ chords, such that no two chords intersect when all points lie on the exterior region, then $i(T_2(G))=n$.

Proof: To prove the result we use mathematical induction on *n*.

Suppose n=1. Then graph G is a cycle with one chord, when all points lie on the exterior region. Then by Theorem A, $T_2(G)$ is planar. On drawing of G in the plane as shown in Fig. 1a, in any plane embedding of $T_2(G)$ has one inner point (see Fig. 1b). Hence the result is true for n=1.

Suppose n=2. Then graph G is a cycle with two chords, such that no two chords intersect when all points lie on the exterior region. Then by Theorem A, $T_2(G)$ is planar. On drawing of G in the plane as shown in Fig. 2(a), in any plane embedding of $T_2(G)$ has two inner points (see Fig.2b). Hence the result is true for n=2.

Assume the result is true for n=m chords.

Now we prove the result for n=m+1 chords. Let e_j be the chord of G. Delete from G the chord e_j , let $G'=G-e_j$, which has m chords. Then by inductive hypothesis, $i(T_2(G'))=m$.

Now again rejoin the chord e_j to G', resulting the graph G, which produces an inner point in $i(T_2(G))$.On drawing of G in the plane as shown in Fig. 3a, in any plane embedding of $T_2(G)$ has m+1 inner points. (see Fig. 3b). Hence the result.

Lemma 2. If G is a theta ⁺ block, then $i(T_2(G))=3$.

Proof. Suppose *G* is a theta⁺ block. Then by the definition of theta⁺ block, *G* contains path of length two joining a pair of nonadjacent points. Then by Theorem A, $T_2(G)$ is planar. On drawing of *G* in the plane as shown in Fig.4(a), in any plane embedding of $T_2(G)$ it has three inner points (see Fig.4b). Thus $i(T_2(G))=3$.

3. Main Results

Theorem 2 in the paper [4] is incorrect. Theorem 2 of [4] states that for a graph G, let $T_2(G)$ be the semi total (point) graph of G. Then $T_2(G)$ is planar (outerplanar) if and only if G is planar (outerplanar). As per the above theorem statement graph shown below (see Fig 5), now G is outerplanar but $T_2(G)$ is not a outerplanar. Therefore Theorem 2 in the paper [4] is incorrect.

Fig. 5.

Now we improve the above stated theorem for outerplanarity.

Theorem 1: The semi total (point) graph $T_2(G)$ of a graph G is outerplanar if and only if every block of G is either a line or a cycle.

Proof: Suppose $T_2(G)$ is outerplanar. Then it is planar and by Theorem A, *G* is planar, which implies that every block of *G* is planar. Assume *G* has a cyclic block b_i other than cycle. Then the block b_i has a subgraph homeomorphic from K_4 -x. Let $G' = K_4$ -x, which has a chord, by Lemma 1, $i(T_2(G'))=1$. Therefore $T_2(G)$ has at least one inner point. Thus $i(T_2(G))\geq 1$. Hence $T_2(G)$ is nonouterplanar, a contradiction. Thus every block of *G* is either a line or a cycle.

Conversely, suppose every block of *G* is either a line or a cycle. Then it is easy to see that, $T_2(G)$ is outer planar. This completes the proof of the theorem.

We now characterize graphs whose semi total (point) graphs are minimally nonouterplanar.

Theorem 2: The semi total (point) graph $T_2(G)$ of a graph *G* is minimally nonouterplanar if and only if *G* has exactly one block such that it is a cycle with one chord, when all point lie on the exterior region and every other block of *G* is either a line or a cycle.

Proof: Suppose $T_2(G)$ is minimally nonouterplanar. Then by Theorem A, G is planar. We now consider the following cases.

Case 1. Suppose every block of G is either a line or a cycle. Then G is an outerplanar graph and by Theorem 1, $T_2(G)$ is outerplanar, a contradiction.

Case 2. Suppose *G* has exactly one block which is a cycle with at least two chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 2$, a contradiction.

Case 3. Suppose *G* has exactly one block such that it is a theta⁺ block and every other block of *G* is either a line or a cycle. Then by Lemma 2, $i(T_2(G))=3$, a contradiction.

Case 4. Suppose *G* has exactly two blocks each of which is a cycle with at least one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 2$, a contradiction.

We have exhausted all possibilities. In each case we found that $T_2(G)$ is not minimally nonouterplanar. Thus we conclude that G holds the condition.

Conversely, suppose G has exactly one block such that it is a cycle with one chord, when all points lie on the exterior region and every other block of G is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=1$, since every other block of $T_2(G)$ is outerplanar. Hence $T_2(G)$ is minimally nonouterplanar.

In the following theorem, we establish a characterization of graphs whose semi total (point) graphs are 2-minimally nonouterplanar.

Theorem 3: The semi total (point) graph $T_2(G)$ of a graph G is 2-minimally nonouterplanar if and only if G holds (1) or (2):

- (i) *G* has exactly one block which is a cycle with two chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle.
- (ii) *G* has exactly two blocks each of which is a cycle with one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle.

Proof: Suppose $T_2(G)$ is 2-minimally nonouterplanar. Then by Theorem A, G is planar. We now consider the following cases.

Case 1. Suppose every block of *G* is either a line or a cycle. Then *G* is an outerplanar graph and by Theorem 1, $T_2(G)$ is outerplanar, a contradiction.

Case 2. Suppose *G* has exactly one block which is a cycle with one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Theorem 2, $i(T_2(G))=1$, a contradiction.

Case 3. Suppose *G* has exactly one block which is a cycle with at least three chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 3$, a contradiction.

Case 4. Suppose *G* has exactly one block such that it is a theta⁺ block and every other block of *G* is either a line or a cycle. Then by Lemma 2, $i(T_2(G))=3$, a contradiction.

Case 5. Suppose G has exactly two blocks one of which is a cycle with at least

two chords and other is a cycle with at least one chord, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 3$, a contradiction.

Case 6. Suppose *G* has exactly three blocks each of which is a cycle with at least one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 3$, a contradiction.

We have exhausted all possibilities. In each case we found that $T_2(G)$ is not 2-minimally nonouterplanar. Thus we conclude that G holds the conditions.

Conversely, suppose *G* has exactly one block which is a cycle with two chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=2$, since every other block of $T_2(G)$ is outerplanar.

Again suppose G has exactly two blocks each of which is a cycle with one chord, when all points lie on the exterior region and every other block of G is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=2$, since every other block of $T_2(G)$ is outerplanar. Hence $T_2(G)$ is 2-minimally nonouterplanar.

Now we establish a characterization of graphs whose semi total (point) graphs are 3-minimally nonouterplanar.

Theorem 4: The semi total (point) graph $T_2(G)$ of a graph G is 3minimally nonouterplanar if and only if

(i) G has exactly one block which is a cycle with three chords, such that no two chords intersect when all points lie on the exterior region and every other block of G is either a line or a cycle, or

- (ii) G has exactly one theta ⁺ block and every other block of G is either a line or a cycle, or
- (iii) G has exactly two blocks one of which is a cycle with two chords and other is a cycle with one chord, such that no two chords intersect when all points lie on the exterior region and every other block of G is either a line or a cycle, or
- (iv) G has exactly three blocks each of which is a cycle with one chord, when all points lie on the exterior region and every other block of G is either a line or a cycle.

Proof: Suppose $T_2(G)$ is 3-minimally nonouterplanar. Then by Theorem A, G is planar. We now consider the following cases.

Case 1. Suppose every block of *G* is either a line or a cycle. Then *G* is an outerplanar graph and by Theorem 1, $T_2(G)$ is outerplanar, a contradiction.

Case 2. Suppose *G* has exactly one block which is a cycle with one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Theorem 2, $i(T_2(G))=1$, a contradiction.

Case 3. Suppose *G* has exactly one block which is a cycle with two chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Theorem 3, $i(T_2(G))=2$, a contradiction.

Case 4. Suppose *G* has exactly one block which is a cycle with at least four chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

Case 5. Suppose *G* has exactly two blocks each of which is a cycle with one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Theorem 3, $i(T_2(G))=2$, a contradiction.

Case 6. Suppose *G* has exactly two blocks each of which is a cycle with at least two chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

Case 7. Suppose *G* has exactly two blocks each of which is a theta⁺ block and every other block of *G* is either a line or a cycle. Then by Lemma 2, $i(T_2(G)) \ge 4$, a contradiction.

Case 8. Suppose *G* has exactly two blocks one of which is a cycle with at least three chords and other is a cycle with at least one chord, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

Case 9. Suppose *G* has exactly two blocks one of which is a cycle with at least one chord and other is a theta⁺ block, such that no two chords intersect when all points lie on the exterior region. Then by Lemma 2 and Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

Case 10. Suppose G has exactly three blocks in which two blocks each of which is a cycle one with at least chord and other is a cycle with at least two chords, such that no two

chords intersect when all points lie on the exterior region. Then by Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

Case 11. Suppose *G* has exactly four blocks each of which is a cycle with at least one chord, when all points lie on the exterior region. Then by Lemma 1, $i(T_2(G)) \ge 4$, a contradiction.

We have exhausted all possibilities. In each case we found that $T_2(G)$ is not 3-minimally nonouterplanar. Thus we conclude that G holds the conditions.

Conversely, suppose *G* has exactly one block which is cycle with three chords, such that no two chords intersect when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=3$, since every other block of $T_2(G)$ is outerplanar.

Suppose *G* has exactly one block which is a theta ⁺ block and every other block of *G* is either a line or a cycle. Then by Lemma 2, $i(T_2(G))=3$, since every other block of $T_2(G)$ is outerplanar.

Suppose G has exactly two blocks one of which is a cycle with two chords and other is a cycle with one chord, such that no two chords intersect when all points lie on the exterior region and every other block of G is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=3$, since every other block of $T_2(G)$ is outerplanar.

Suppose *G* has exactly three blocks each of which is a cycle with one chord, when all points lie on the exterior region and every other block of *G* is either a line or a cycle. Then by Lemma 1, $i(T_2(G))=3$, since every other block of $T_2(G)$ is outerplanar. Hence $T_2(G)$ is 3-minimally nonouterplanar.

4. Conclusions

We present here characterizations of graphs whose semi total (point) graphs are outerplanar and k-minimally nonouterplanar (k=1, 2 or 3).

We further find characterizations of graphs whose semi total (point) graphs are outerplanar in terms of forbidden subgraphs and k-minimally nonouterplanar (k=1, 2 or 3) in terms of forbidden subgraphs.

Acknowledgements

The authors are grateful to the reviewers for their critical comments and valuable suggestions.

References

- 1. F. Harary, Graph Theory (Addison Wesley, Reading, Mass, 1969).
- 2. E. Sampath Kumar and S. B. Chikkodimath, J. Karnatak University Science, 18, 281, (1973).
- 3. E. Sampath Kumar and S. B. Chikkodimath, J. Karnatak University Science, 18, 285, (1973).
- 4. V. R.Kulli, Proc. Indian. Nat. Sci. Acad, 41, 275, (1975).