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    Abstract 
 

We present here characterizations of graphs whose semi total (point) graphs are outerplanar 
and k-minimally nonouterplanar  (k = 1, 2 or 3). 
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1.  Introduction 
 
All graphs considered are finite, undirected and without loops or multiple lines. For 
standard terminology and notations we follow Harary [1]. The semi total (point) graph 
T2(G) of a graph G is the graph whose point set is V(G)∪X(G) where two points are 
adjacent if and only if (i) they are adjacent points of G, or (ii) one is a point and the other 
is a line of G incident with it. This concept was introduced by Sampathkumar and 
Chikkodimath [2, 3]. In 1975 Kulli [4] introduced the concept minimally nonouterplanar 
graph. The inner point number i(G) of a planar graph G is the minimum possible number 
of points not belonging to the boundary of the exterior region in any embedding of G in 
the plane. Obviously G is outerplanar if and only if i(G)=0. A graph G is minimally 
nonouterplanar if i(G)=1, and G is k-minimally (k ≥ 2) nonouterplanar if i(G)=k. 

Definition 1.1:  A block of a graph G is a maximal nonseperable subgraph. 
Definition 1.2: A line joining two nonadjacent points of a cycle is called a chord of the 
cycle. 
                                                 
2 Corresponding author: niru_km@yahoo.com 
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Definition 1.3: Let C be a cycle with p≥4 points. If a path of length two joins two 
nonadjacent points of C then it is called a theta+ block. 

The following will be useful in the proof of our results: 

Theorem A [2]: For a graph G, let T2(G) be the semi total (point) graph of G. Then               
T2 (G) is planar if and only if G is planar. 

 
2. Prerequisites 
 
We first prove two lemmas which are useful to prove our results. 

Lemma 1:  If  G is a cycle with n(n≥1) chords, such that no two chords intersect when all 
points lie on the exterior region, then i(T2(G))=n. 

Proof:  To prove the result we use mathematical induction on n. 
Suppose n=1. Then graph G is a cycle with one chord, when all points lie on the exterior 
region. Then by Theorem A, T2(G) is planar. On drawing of G in the plane as shown in 
Fig. 1a, in any plane embedding of T2(G) has one inner point (see Fig. 1b). Hence the 
result is true for n=1. 

Suppose n=2. Then graph G is a cycle with two chords, such that no two chords 
intersect when all points lie on the exterior region. Then by Theorem A, T2(G) is planar. 
On drawing of G in the plane as shown in Fig. 2(a), in any plane embedding of T2(G) has 
two inner points (see Fig.2b). Hence the result is true for n=2. 

Assume the result is true for n=m chords. 
Now we prove the result for n=m+1 chords. Let ej be the chord of G. Delete from G 

the chord ej, let G′ =G−ej, which has m chords. Then by inductive hypothesis, 
i(T2(G ))=m. ′

Now again rejoin the chord ej to G′ , resulting the graph G, which produces an inner 
point in i(T2(G)).On drawing of G in the plane as shown in Fig. 3a, in any plane 
embedding of T2(G) has m+1 inner points. (see Fig. 3b). Hence the result.              

Lemma 2. If G is a theta + block, then i(T2(G))=3. 

Proof.  Suppose G is a theta+ block. Then by the definition of theta+ block, G contains 
path of length two joining a pair of nonadjacent points. Then by Theorem A, T2(G) is 
planar. On drawing of G in the plane as shown in Fig.4(a), in any plane embedding of 
T2(G) it has three inner points (see Fig.4b).Thus i(T2(G))=3.                            
 
 

 

 
 

                                       (a)                   Fig.1.                (b)        
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                                   (a)               Fig. 4.             (b)           

3. Main Results 

Theorem 2 in the paper [4] is incorrect. Theorem 2 of [4] states that for a graph G, let 
T2(G) be the semi total (point) graph of G. Then T2(G) is planar (outerplanar) if and only 
if G is planar (outerplanar). As per the above theorem statement graph shown below              
(see Fig 5), now G is outerplanar but T2(G) is not a outerplanar.Therefore Theorem 2 in 
the paper [4] is incorrect. 
     
                                               G:                                                           T2(G): 

 

  

 

                                                          Fig. 5. 

 

Now we improve the above stated theorem for outerplanarity. 

Theorem 1:  The semi total (point) graph T2(G) of a graph G is outerplanar if and only if 
every block of G is either a line or a cycle. 
 



554 On Minimally Short Communication 
 

Proof:  Suppose T2(G) is outerplanar. Then it is planar and by Theorem A, G is planar, 
which implies that every block of G is planar. Assume G has a cyclic block bi other than 
cycle. Then the block bi has a subgraph homeomorphic from K4−x. Let G′ = K4−x, which 
has a chord, by Lemma 1, i(T2( G′ ))=1. Therefore T2(G) has at least one inner point. Thus 
i(T2(G))≥1. Hence T2(G) is nonouterplanar, a contradiction. Thus every block of G is 
either a line or a cycle. 

Conversely, suppose every block of G is either a line or a cycle. Then it is easy to see 
that,T2(G) is outer planar. This completes the proof of the theorem.                                   

We now characterize graphs whose semi total (point) graphs are minimally 
nonouterplanar. 

Theorem 2:  The semi total (point) graph T2(G) of a graph G is minimally nonouterplanar 
if and only if G has exactly one block such that it is a cycle with one chord, when all point 
lie on the exterior region and every other block of G is either a line or a cycle. 
Proof:  Suppose T2(G) is minimally nonouterplanar.Then by Theorem A, G is planar. We 
now consider the following cases. 

Case 1. Suppose every block of G is either a line or a cycle. Then G is an outerplanar 
graph and by Theorem 1, T2(G) is outerplanar, a contradiction. 

Case 2. Suppose G has exactly one block which is a cycle with at least two chords, such 
that no two chords intersect when all points lie on the exterior region and every other 
block of G is either a line or a cycle. Then by Lemma 1, i(T2(G))≥2, a contradiction. 

Case 3. Suppose G has exactly one block such that it is a theta+ block and every other 
block of G is either a line or a cycle. Then by Lemma 2, i(T2(G))=3, a contradiction. 

Case 4. Suppose G has exactly two blocks each of which is a cycle with at least one 
chord, when all points lie on the exterior region and every other block of G is either a line 
or a cycle. Then by Lemma 1, i(T2(G))≥2, a contradiction. 

We have exhausted all possibilities. In each case we found that T2(G) is not minimally 
nonouterplanar.  Thus we conclude that G holds the condition. 
Conversely, suppose G has exactly one block such that it is a cycle with one chord, when 
all points lie on the exterior region and every other block of G is either a line or a cycle. 
Then by Lemma 1, i(T2(G))=1, since every other block of T2(G) is outerplanar.Hence 
T2(G) is minimally nonouterplanar.                                                                                      

In the following theorem, we establish a characterization of graphs whose semi total 
(point) graphs are 2-minimally nonouterplanar. 

Theorem 3: The semi total (point) graph T2(G) of a graph G is 2-minimally 
nonouterplanar if and only if G holds (1) or (2): 

(i) G has exactly one block which is a cycle with two chords, such that no two chords 
intersect when all points lie on the exterior region and every other block of G is 
either a line or a cycle. 

(ii) G has exactly two blocks each of which is a cycle with one chord, when all points 
lie on the exterior region and every other block of G is either a line or a cycle. 
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Proof: Suppose T2(G) is 2-minimally nonouterplanar.Then by Theorem A, G is planar. 
We now consider the following cases. 

Case 1. Suppose every block of G is either a line or a cycle. Then G is an outerplanar 
graph and by Theorem 1, T2(G) is outerplanar, a contradiction. 

Case 2. Suppose G has exactly one block which is a cycle with one chord, when all points 
lie on the exterior region and every other block of G is either a line or a cycle. Then by 
Theorem 2, i(T2(G))=1, a contradiction. 

Case 3. Suppose G has exactly one block which is a cycle with at least three chords, such 
that no two chords intersect when all points lie on the exterior region and every other 
block of G is either a line or a cycle. Then by Lemma 1, i(T2(G))≥3, a contradiction. 

Case 4. Suppose G has exactly one block such that it is a theta+ block and every other 
block of G is either a line or a cycle. Then by Lemma 2, i(T2(G))=3, a contradiction. 

Case 5. Suppose G   has   exactly   two   blocks   one   of which is a cycle with at  least   

two  chords   and  other  is  a  cycle  with at  least   one  chord, such   that  no  two  chords 

intersect when all points lie on the exterior region and  every other  block of  G is  either  a  

line or a cycle. Then by Lemma 1, i(T2(G))≥3, a contradiction. 

Case 6. Suppose G has exactly three blocks each of which is a cycle with at least one 
chord, when all points lie on the exterior region and every other block of G is either a line 
or a cycle. Then by Lemma 1, i(T2(G))≥3, a contradiction. 

We have exhausted all possibilities. In each case we found that T2(G) is not                
2-minimally nonouterplanar.  Thus we conclude that G holds the conditions. 
Conversely, suppose G has exactly one   block   which  is a cycle  with two chords, such  
that no  two chords  intersect   when  all  points  lie on the exterior region and  every  other   
block  of   G   is  either  a   line   or  a  cycle. Then  by  Lemma 1, i(T2(G))=2,  since every   
other  block  of T2(G) is outerplanar.  

Again suppose  G has exactly two blocks each of which is a cycle with one chord, 
when all points lie on the exterior region and every other block of G is either a line or a 
cycle. Then by Lemma 1, i(T2(G))=2, since every other block of T2(G) is 
outerplanar.Hence T2(G) is 2-minimally nonouterplanar.                

Now   we   establish   a   characterization   of   graphs  whose  semi  total (point) 
graphs are 3-minimally nonouterplanar. 
 
Theorem 4:  The       semi     total     (point)      graph    T2(G)    of     a   graph    G   is 3-
minimally  nonouterplanar    if    and   only   if 
 

(i) G has exactly one block which is a cycle with three chords, such that no two 
chords intersect when all points lie on the exterior region and every other block 
of G is either a line or a cycle, or 
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(ii) G has exactly one theta + block and every other block of G is either a                            
line or a cycle, or 

(iii) G has exactly  two   blocks   one  of   which   is   a   cycle with two                            
chords and other is a cycle with one chord, such   that  no  two  chords                            
intersect  when  all  points  lie on the  exterior  region  and  every other                            
block of G is either a  line or a cycle, or 

(iv) G has exactly three blocks each of which is a cycle with   one  chord,                           
when all points lie on the exterior region and   every other block of G is                           
either a line or  a cycle. 

Proof:  Suppose T2(G) is 3-minimally nonouterplanar.Then by Theorem A, G is planar. 
We now consider the following cases. 
Case 1. Suppose every block of G is either a line or a cycle. Then G is an outerplanar 
graph and by Theorem 1, T2(G) is outerplanar, a contradiction. 
Case 2.  Suppose G has exactly one block which is a cycle with one chord, when all points 
lie on the exterior region and every other block of G is either a line or a cycle. Then by 
Theorem 2, i(T2(G))=1, a contradiction. 
Case 3. Suppose G has exactly one block which is a cycle with two chords, such that no 
two chords intersect when all points lie on the exterior region and every other block of G 
is either a line or a cycle. Then by Theorem 3, i(T2(G))=2, a contradiction. 
Case 4. Suppose G has exactly one block which is a cycle with at least four chords, such 
that no two chords intersect when all points lie on the exterior region and every other 
block of G is either a line or a cycle. Then by Lemma 1, i(T2(G))≥4, a contradiction.  
Case 5. Suppose G has exactly two blocks each of which is a cycle with one chord, when 
all points lie on the exterior region and every other block of G is either a line or a cycle. 
Then by Theorem 3, i(T2(G))=2, a contradiction. 
Case 6. Suppose G has exactly two blocks each of which is a cycle with at least two 
chords, such that no two chords intersect when all points lie on the exterior region and 
every other block of G is either a line or a cycle. Then by Lemma 1, i(T2(G))≥4, a 
contradiction. 
Case 7. Suppose G has exactly two blocks each of which is a theta+ block and every other 
block of G is either a line or a cycle. Then by Lemma 2, i(T2(G))≥4, a contradiction. 
Case 8. Suppose G has exactly two blocks one of which is a cycle with at least three 
chords and other is a cycle with at least one chord, such that no two chords intersect when 
all points lie on the exterior region and every other block of G is either a line or a cycle. 
Then by    Lemma 1, i(T2(G))≥4,a contradiction. 
Case 9. Suppose G has exactly two blocks one of which is a cycle with at least one chord 
and other is a theta+ block, such that no two chords intersect when all points lie on the 
exterior region. Then by Lemma 2 and Lemma 1, i(T2(G))≥4, a contradiction. 
Case 10. Suppose G has exactly three blocks in which two blocks each of which is a cycle 
one with at least chord and other is a cycle with at least two chords, such that no two 
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chords intersect when all points lie on the exterior region. Then by Lemma 1, i(T2(G))≥4, 
a contradiction. 
Case 11. Suppose G has exactly four blocks each of which is a cycle with at least one 
chord, when all points lie on the exterior region. Then by Lemma 1, i(T2(G))≥4, a 
contradiction. 

We have exhausted all possibilities. In each case we found that T2(G) is not                        
3-minimally nonouterplanar. Thus we conclude that G holds the conditions. 
Conversely, suppose G has exactly one block which is cycle with three chords, such that 
no two chords intersect when all points lie on the exterior region and every other block of 
G is either a line or a cycle. Then by Lemma 1, i(T2(G))=3, since every other block of 
T2(G) is outerplanar. 

Suppose G has exactly one block which is a theta + block and every other block of G is 
either a line or a cycle. Then by Lemma 2, i(T2(G))=3, since every other block of T2(G) is 
outerplanar. 

Suppose G has exactly two blocks one of which is a cycle with two chords and other is 
a cycle with one chord, such that no two chords intersect when all points lie on the 
exterior region and every other block of G is either a line or a cycle. Then by    Lemma 1, 
i(T2(G))=3, since every other block of T2(G) is outerplanar. 

Suppose G has exactly three blocks each of which is a cycle with one chord, when all 
points lie on the exterior region and every other block of G is either a line or a cycle. Then 
by Lemma 1, i(T2(G))=3, since every other block of T2(G) is outerplanar. Hence T2(G) is 
3-minimally nonouterplanar.                                                                                                 

4. Conclusions 

We present here characterizations of graphs whose semi total (point) graphs are 
outerplanar and k-minimally nonouterplanar (k=1, 2 or 3).  

We further find characterizations of graphs whose semi total (point) graphs are 
outerplanar in terms of forbidden subgraphs and k-minimally nonouterplanar                      
(k=1, 2 or 3) in terms of forbidden subgraphs. 
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