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Abstract 
 

By a new partial ordering relation “ ≤ ”  the set of convex sublattices CS(L)  of a lattice L is 
again a lattice. In this paper we establish some results on the pseudocomplementation of 
(CS(L); ≤). We show that a lattice L with 0 is dense if and only if CS(L) is dense. Then we 
prove that a finite distributive lattice is a Stone lattice if and only if CS(L) is Stone. We also 
prove that an upper continuous lattice L is a Stone lattice if and only if CS(L) is Stone.  
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Set of all convex sublattices of a lattice L is denoted by CS(L). Lavanya and Bhatta [1] have 
defined the partial order “ ≤ ” on CS(L) as follows: 
 

For A, B ∈ CS(L), A ≤ B if and only if “for every a ∈ A there exists a b ∈ B, such that 
that a ≤ b and for every b∈ B there exists an a ∈ A, Such that b ≥ a.” It is easy to see that 
‘≤’ is clearly a partial order and (CS(L); ≤) forms a lattice, where for A, B ∈ CS(L),  

Inf {A, B} =A B 
           = 〈{a∧b|a∈A, b∈B}〉 
                  = {x∈L|a∧b≤x≤a1∧b1 for some a, a1∈ A and b, b1∈ B}  
Sup {A, B} =A B 
                    = 〈{a∨b|a∈A, b∈B}〉 
                   ={x∈L|a∨b≤x≤ a1∨ for some a, a1∈A and b, b1 ∈B} 1b

where for any non-empty subset H of L, 〈H〉 denotes the convex sublattice generated by 
H. Note that A B and A B have also been studied by Nieminen [2]. In this paper we 
establish some result on the pseudocomplementation of “(CS(L); ≤)”. We show that a 
lattice L with 0 is dense if and only if CS(L) is dense. Then we prove that a finite 
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distributive lattice is a Stone lattice if and only if the lattice of its convex sublattices is 
Stone. We also prove that an upper continuous lattice L is a Stone lattice if and only if 
CS(L) is Stone.  

A lattice L is called upper continuous if for any a ∈ L, A ∧ ∨ D=∨ (a ∧ x ⎢x ∈ D) holds 
for every directed above subset D of L. In a lattice L with 0 and 1, an element b∈L is 
called a pseudocomplement of a ∈L if a∧b=0 and for any x∈L, x ∧ a = 0 implies x ≤ b. 
We denote the pseudocomplement of a by a*. A lattice L with 0 and 1 is called 
pseudocomplemented  if its every element has a pseudocomplement. Clearly 0*= 1 and 
1*=0. It is well known that a lattice L is called complete if for any H ⊆ L both ∧ H and ∨ 
H exist in L. An element a of a complete lattice L is called a compact element if a ≤ ∨ X 
for some X ⊆ L implies that a ≤ ∨ X1 for some finite X1 ⊆ X. A complete lattice L is 
called algebraic if its every element is the join of compact elements. It is well known that 
every distributive algebraic lattice is pseudocomlemented. Therefore any finite 
distributive lattice is pseudocomlemented. One may ask the question for a 
pseudocomplemented lattice L “Is CS(L) pseudocomplemented?” Lavanya and Bhatta [1] 
have proved the following result.  
 

Theorem 1. Let L be an upper continuous lattice then L is pseudocomplemented if and 
only if CS(L) is pseudocomplemented.  
 

Thus for any distributive algebraic lattice L, CS(L) is pseudocomplemented. In 
particular, if L is finite distributive, then CS(L) is also a finite distributive lattice and 
hence is pseudocomplemented. Following result will be needed for the development of the 
paper.  
 

Proposition 2. Let L and CS(L) be pseudocomplemented lattices. If a* is the 
pseudocomplement of a in L, then {a*} is the  pseudocomplement of {a} in CS(L). 
 

Proof : Suppose A ∈ CS(L) such that {a} A= 0. Then 〈{a ∧ p ⎢ p∈A}〉={0}, thus, a ∧p 
=0 for all p∈A. This implies p ≤ a* for all p∈ A, and so A ≤ {a*} in CS(L) therefore {a*} 
is the  pseudocomplement of {a} in CS(L).  
 

To establish our next theorem, we need the following lemma. 
 

Lemma 3. Let A, D and B, E are the convex sublattices of the lattices L and K 
respectively. Then,  

(A×B)  (D×E) = (A D) × (B E) and 
(A×B) (D×E)= (A D) × (B E)   

 

Proof: Clearly A ≤ A  D and B ≤ B  E, so A×B≤ (A  D) ×(B  E). Similarly D×E ≤ 
(A  D) ×(B  E).Hence, (A×B)  (D×E) ≤ (A   D) ×(B  E).  

For reverse inequality, let (x, y) ∈(A  D) ×(B  E).Then x ∈ A D and y∈B  E, 
which implies that a ∨ d ≤ x ≤ a1 ∨ d1 and b ∨ e ≤ y ≤ b1 ∨ e1 for some a, a1∈A, b, b1 ∈ B, 
d, d1∈D and e, e1 ∈ E. Then (a ∨ d, b ∨ e) ≤ (x, y) ≤ (a1 ∨ d1, b1 ∨ e1) and so (a, b) ∨ (d, e) 
≤ (x, y) ≤ (a1,b1) ∨(d1, e1). But (a1,b1) ∨(d1, e1) ∈ (A×B)  (D×E).  

Again, if (p, q) ∈(A×B)  (D×E), Then (r1, s1) ∨ (m1, n1) ≤ (p, q) ≤ (r2, s2) ∨(m2, n2) 
for some r1, r2 ∈A, s1, s2 ∈ B, m1, m2 ∈D and n1, n2 ∈ E, But (r1, s1) ∨ (m1, n1)=  (r1 ∨ m1,  
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s1 ∨ n1) ∈(A D)×(B E). Hence by definition of ‘≤’ in CS(L), (A D)× (B E) ≤ (A×B) 
 (D×E). 

Therefore,  (A×B)  (D×E)=(A D) ×(B E). 
Similarly,  (A×B)  (D×E)=(A D) ×(B  E).  

 

Theorem 4. For any lattices L and K,  CS(L×K) ≅ CS(L) ×CS(K). 
 

Proof: Let the map f: CS(L×K) → CS(L) ×CS(K) be defined by f(C) =〈A , B〉, where C∈ 
CS(L×K), and so by Koh [3] C= A×B for A∈ CS(L) and B∈CS(K) and the representation 
is unique. Clearly f is well defined .Let C,F ∈ CS(L×K), then C= A×B and F =D×E for 
A,D ∈ CS(L) and B,E∈ CS(K).                                                  

Suppose f(C) =f(F). Then 〈A , B〉=〈D , E〉 and so A=D and B= E which imply C= 
A×D= D×E= F Hence f is one-one . f is obviously onto. 

Now f(C F) = f((A×B)  (D×E)) 
  =f((A D)×(B E))  by Lemma 3 
  =〈A D,  B E〉 
  =〈A, B〉  〈D , E〉 
        =f(C)  f(F) 

Similarly, f(C F) =f(C)  f(F)  
Hence f is isomorphism  
 

In a lattice L an element x is said to cover an element y if x ≥ y and for any t∈L with  
x ≥ t ≥ y, implies either x=t or y=t. In a lattice with 0, an element which covers 0 is called 
an atom.Any lattice with a single atom is called a  dense lattice.That is, a lattice with 0 is 
dense if and only if 0 is meet irreducible. 
 

Now we prove the following result, which will be needed to prove our next two 
theorems. 
 
Theorem 5. Let L be a lattice with 0. L is dense if and only if CS(L) is dense  
 

Proof : Let L be dense. Then it has only one atom , say a. Then a≤x for all x∈L, with x ≠ 
0. This implies {0,a} ≤ A for all A ∈CS(L), where A ≠ {0}.That is {0,a} is the only atom 
in CS(L). Hence CS(L) is a dense lattice. 

Conversely, Suppose CS(L) is dense. Let A be the only atom of CS(L). As A is the 
atom so A ≠ {0}. Let t ≠ 0 be any element of L-A, then A ≤  {t} implies that x ≤ t, for all x 
∈ A. Since A ≠ {0}, so A must contain non-zero elements. For any x ∈ A, Since the 
interval [0, x] ≤ {x}, so 0 ∈ A. Now, we prove that A cannot contain more than one non-
zero elements. If not, let x1 ≠ 0, x2 ≠ 0 such that x1, x2 ∈ A. Then obviously the intervals 
[0,x1] ≤ A and [0,x2] ≤ A. Since x1 ≠ x2 so at least one of them, say [0,x1] ≠A. This 
contradicts the atom property of A, Hence A must be of the form {0, a} where a ≠ 0. Since 
A is convex, so A= {0, a} = [0, a]. This implies that a an atom of L. Moreover, a ≤ t for all 
t ∈ L-A, implies that a is the only atom of A and hence L is a dense Lattice  
 

A distributive pseudocomplemented lattice L is called a Stone lattice if a* ∨ a** = 1 
for all a ∈ L. It should be noted that in any distributive pseudocomplemented lattice L, (a 
∨ b)* = a* ∧ b* always holds for all a, b ∈ L. Moreover, L is a Stone lattice if and only if 
(a ∧ b)* = a* ∨ b* for all a, b ∈ L. Equivalently, we can say that a distributive lattice L 
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with pseudocomplementation is a Stone algebra if and only if S(L)={a* ⎢a ∈ L} is a 
subalgebra of L. In a dense lattice L with 1, notice that for all a ∈ L with a ≠ 0, a* = 0 and 
so a* ∨ a** = 0 ∨ 1=1. Therefore every distributive dense lattice is a Stone lattice. 
Moreover by Grätzer [4], we know that a finite distributive lattice is a Stone lattice if and 
only if it is the direct product of finite distributive dense lattices. Therefore we have the 
following result.  
 
Theorem 6. A finite distributive lattice L is Stone if and only if CS(L) is Stone. 
 

Proof: Suppose L is a Stone lattice. Since CS(L) is a finite distributive lattice so CS(L) is 
also pseudocomplemented Since L is Stone, so by corollary 2.6.4 of [2], L= L1×L2 
×...........× Ln, where Li are finite distributive dense lattices. Then by Theorem 4, CS(L) ≅ 
CS(L1) × CS(L2) ×..........×CS(Ln).  Now by Theorem 5, CS(Li) are dense lattices and so by 
G. Grätzer [4] again, CS(L) is Stone. 

Conversely, let CS(L) be Stone, Let a ∈ L, then by Proposition 2, {a* ∨ a**}= 
{a*} {a**} = {a}* {a}** = {1}. This implies   a* ∨ a** = 1 and so L is also Stone.  
 

We conclude the paper with a similar type of result when L is upper continuous.  
 

Theorem 7. If L is an upper continuous lattice then L is a Stone lattice if and only if 
CS(L) is Stone. 
 

Proof: Suppose L is a Stone lattice. Then by Theorem 1, CS(L) is pseudocomplemented. 
Let A ∈ CS(L), then by Lavanya and Bhatta [1] A*={(∨ A)*}; that is, A*={t} for some t ∈ 
L. Then A** = {t}*={t*} by Proposition 2. Therefore, again by Proposition 2, A*=A*** 
= {t*}* = {t**}. Hence A* A**={t*} {t**}={t*∨ t**} = {1} as L is Stone. This 
implies CS(L) is also Stone. 

The proof of its converse is exactly same as the proof of the converse part of Theorem 
6  
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