Dynamics of Boundary Graphs

G. Marimuthu ${ }^{\mathbf{1 *}^{*}}$ and M. S. Saraswathy ${ }^{2}$
${ }^{1}$ Department of Mathematics, The Madura College, Madurai-625 011, India
${ }^{2}$ Department of Mathematics, Thiagarajar College of Engineering, Madurai-625 015, India

Received 20 May 2013, accepted in revised form 14 August 2013

Abstract

In a graph G , the distance $\mathrm{d}(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. A vertex v is a boundary vertex of a vertex u if $d(u, w) \leq d(u, v)$ for all $w \in N(v)$. The boundary graph $B(G)$ based on a connected graph G is a simple graph which has the vertex set as in G. Two vertices u and v are adjacent in $\mathrm{B}(\mathrm{G})$ if either u is a boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all other vertices in the other components and is adjacent to all of its boundary vertices within the component. Given a positive integer m, the $m^{\text {th }}$ iterated boundary graph of G is defined as $B^{m}(G)=B\left(B^{m-1}(G)\right)$. A graph G is periodic if $B^{m}(G) \cong G$ for some m. A graph G is said to be an eventually periodic graph if there exist positive integers m and $k>0$ such that $B^{m+i}(G) \cong B^{i}(G), \forall i \geq k$. We give the necessary and sufficient condition for a graph to be eventually periodic.

Keywords: Boundary graph; Periodic graph.
© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i3.14866 J. Sci. Res. 5 (3), 447-455 (2013)

1. Introduction and Definitions

The graphs considered here are nontrivial and simple. For other graph theoretic notation and terminology, we follow [1]. In a graph G, the distance $\mathrm{d}(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is defined as $r(G)=\min \{e(u): u \in V(G)\}$ and the diameter $d(G)$ of G is defined as $d(G)=\max \{e(u): u \in V(G)\}$. A graph G for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$. A vertex v is called an eccentric vertex of a vertex u if $\mathrm{d}(u, v)=e(u)$.

[^0]A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. The eccentric graph based on G is denoted by G_{e}, whose vertex set is $V(G)$ and two vertices u and v are adjacent in G_{e} if and only if $\mathrm{d}(u, v)=\min \{e(u), e(v)\}$.

Gimbert et al. [3] studied the iterations of eccentric digraphs. The eccentric digraph of a digraph G, denoted by $E D(G)$, is the digraph on the same vertex set as in G but with an arc from a vertex u to a vertex v in $E D(G)$ if and only if v is an eccentric vertex of u in G. Given a positive integer k, the $k^{\text {th }}$ iterated eccentric digraph of G is written as $E D^{k}(G)=E D\left(E D^{k-1}(G)\right)$ where $E D^{0}(G)=G$. For every digraph G, there exists smallest integer $p^{\prime}>0$ and $t^{\prime} \geq 0$ such that $E D^{t^{\prime}}(G) \cong E D^{p^{+}+t}(G)$, where \cong denotes graph isomorphism. We call p^{\prime}, the iso-period of G and t^{\prime}, the iso-tail of G; these quantities are denoted by $p(G)$ and $t(G)$, respectively.

Kathiresan and Marimuthu [4] introduced a new type of graph called radial graph. Two vertices of a graph G are said to be radial to each other if the distance between them is equal to the radius of the graph. Two vertices of graph G are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G denoted by $R(G)$ has the vertex as in G and two vertices are adjacent in $R(G)$ if and only if they are radial in G. If G is disconnected, then two vertices are adjacent in $R(G)$ if they belong to different components of G. A graph G is called a radial graph if $R(H) \cong G$ for some graph H. In [5] Kathiresan et al. studied the properties of iteration of radial graphs. Given a positive integer m, the $m^{\text {th }}$ iterated radial graph of G is defined as $R^{m}(G)=R\left(R^{m-1}(G)\right)$. Note that $R^{0}(G) \cong G$. A graph G is periodic if $\mathrm{R}^{\mathrm{m}}(G) \cong G$ for some m. If p is the least positive integer with this property, then G is called a periodic graph with iso-period p. When $p=1, \mathrm{G}$ is called as a fixed graph. A graph G is said to be eventually periodic if there exist positive integers m and $k>0$, such that $R^{m+i}(G) \cong R^{i}(G), \forall i \geq k$. If p and k are the least positive integers with this property, then G is eventually periodic with iso-period p and iso-tail k.

Based on the concept of radial graphs, Marimuthu and Sivanandha Saraswathy [6] introduced the concept of boundary graphs. A vertex v is a boundary vertex of a vertex u if $\mathrm{d}(u, w) \leq \mathrm{d}(u, v)$ for all $w \in N(v)$. The boundary graph $B(G)$ based on a connected graph G is a simple graph which has the vertex set as in G. Two vertices u and v are adjacent in $B(G)$ if either u is a boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all the vertices in the other components and is adjacent to all of its boundary vertices within the component. A graph G is called a boundary graph if there exists a graph H such that $B(H)=G$. we defined the neighborhood $N_{k}(u)=\{w \in N(v) / d(u, w)=k\}$.

Motivated by the work of J. Gimbert et al., [2,3] and KM. Kathiresan et al., [5],We study here an iterated version of a distance dependent mapping. Given a positive integer m, the $m^{\text {th }}$ iterated boundary graph of G is defined as $B^{m}(G)=B\left(B^{m-1}(G)\right)$. Note that $B^{0}(G) \cong G$.

Definition 1.1: A graph G is periodic if $B^{m}(G) \cong G$ for some m. If p is the least positive integer with this property, then G is called a periodic graph with iso-period p. When $p=1$, G is called as a fixed graph.
Definition 1.2: A graph G is said to be eventually periodic if there exist positive integers m and $k>0$, such that $B^{m+i}(G) \cong B^{i}(G), \forall i \geq k$. If p and k are the least positive integers with this property, then G is called an eventually periodic graph with iso-period p and iso-tail k.

Figs. 1, 2 and 3 illustrate these definitions showing boundary graph of G and its iterated boundary graphs.

Fig. 1. The graph G.

Fig. 2. The graph $B(G)$.

Fig. 3. The graph $B^{2}(G)$.

In the above example $B^{3}(G) \cong B(G)$. Here $k(G)=1$ and $p(G)=2$ where k denotes the iso-tail and p denotes the iso-period of G.

Let $F_{11}, F_{12}, F_{22}, F_{23}, F_{24}$ and F_{3} denote the set of all graphs G such that $r(G)=1$ and $d(G)=1 ; r(G)=1$ and $d(G)=2 ; r(G)=2$ and $d(G)=2 ; r(G)=2$ and $d(G)=3 ; r(G)=2$
and $d(G)=4$ and $r(G) \geq 3$ respectively and F_{4} denote the set of all disconnected graphs. It is well known that $d(G) \geq 4$ implies that $\mathrm{d}(\overline{\mathrm{G}}) \leq 2$.

2. Previous results

The following theorems are appeared in [6].
Theorem 2.1 [6]: $B(G)=G$ if and only if G is complete.
Theorem 2.2 [6]: For a graph $G \in F_{12}, B(G)=K_{n}$ if and only if either
$N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of G.

Theorem 2.3 [6]: Let G be a graph. Then $B(G)=\bar{G}$ if and only if the following conditions hold.
(i) G has no complete vertex .
(ii) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of G.
(iii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v of G, where $k=d(u, v)+1$.
Theorem 2.4 [6]: If G has at least one isolated vertex, then G is not a boundary graph.
Theorem 2.5 [6]: Let $G \in F_{4}$ without isolated vertices. If \bar{G} without complete vertices has the following properties
(i) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of G.
(ii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v of G, where $k=d(u, v)+1$ then, G is a boundary graph.

3. Main Results

Proposition 3.1: Every graph is either periodic or eventually periodic.
Proof. Consider the set $A=\left\{B^{m}(G): m=0,1,2 \ldots\right\}$ where $B^{0}(G)=G$. If G has n vertices, then $B^{m}(G)$ also has n vertices. Moreover, the possible number of graphs in A is atmost $2^{\frac{n(n-1)}{2}}$. $B^{m+k}(G) \cong B^{k}(G)$ and hence $B^{m+i}(G) \cong B^{i}(G), \forall i \geq k$. If $k=0$,then G is periodic. If $k>$ 0 , then G is eventually periodic.

Proposition 3.2: Let C_{n} be any cycle. Then C_{n} is periodic with iso-period 1 if it is odd and eventually periodic with iso-period 1 if it is even.

Proof. Case (i) If n is odd, $B\left(C_{n}\right) \cong C_{n}$. Hence C_{n} is periodic with iso-period 1 .
Case(ii) If n is even, $B\left(C_{n}\right) \cong \frac{n}{2} K_{2}$, a disconnected graph with each component K_{2}. By the definition of $B(G), B^{2}\left(C_{n}\right)$ is a complete graph. Hence by Theorem 2.1, C_{n} is eventually periodic with iso-period 1 .

Let us find some graphs of order n which is either periodic or eventually periodic.
Observation 3.3: $C_{n}+C_{n}$ is a periodic graph for odd values of $n, \forall n \geq 3$ whose $k(G)=0$ and $p(G)=2$ where + denotes the usual addition of graphs.

Observation 3.4: We also observed that $p\left(C_{m}+C_{m}\right)=p\left(C_{m}\right)+p\left(C_{m}\right)$ where $m=2 n+1$, $\forall n \geq 2$.

Observation 3.5: $C_{2 m+1} \times C_{2 m+1}$ is a fixed graph whose $k(G)=0$ and $p(G)=1, \forall m \geq 1$ where \times denotes the Cartesian product of graphs.

Observation 3.6: $C_{2 m} \times C_{2 m}$ is eventually periodic with $k(G)=2, p(G)=1$.
Let us say that a class is periodic if every graph in the class is periodic. As we observed earlier $C_{n}+C_{n}$, complete graph, $C_{2 m+1} \times C_{2 m+1}$ are periodic graphs.

Observation 3.7: Every complete n-partite graph with $\left|V_{i}\right| \geq 2$ for each $i^{\text {th }}$ partition is eventually periodic with iso-period 1 .

Proof. Let G be a complete n-partite graph with $\left|V_{i}\right| \geq 2$ for each $i^{\text {th }}$ partition. Any two vertices v_{i} and v_{j} in G are adjacent in $B(G)$ if and only if they are in the same partition. Therefore $B(G)$ is a disconnected graph with each component complete. By the definition of boundary graph, $B^{2}(G)$ is complete. By Theorem 2.1, G is eventually periodic with isoperiod 1 .

Proposition 3.8: Every path $P_{n}, n \geq 3$ is eventually periodic with iso-period 1.

Proof. Let $v_{1}, v_{2} \ldots v_{n}$ be a path on n vertices. Since the end vertices are complete, $B\left(P_{n}\right) \in F_{12}$. Further $v_{2}, v_{3} \ldots v_{n-1}$ are non-adjacent vertices of eccentricity 2 in $B\left(P_{n}\right)$ and $B^{2}\left(P_{n}\right)=K_{n}$. Hence by Theorem2.1, P_{n} is eventually periodic with iso-period 1.

Lemma 3.9: A graph $G \in F_{12}$ is eventually periodic with iso-period 1 if and only if either $N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of G.

Proof. Let $G \in F_{12}$. Assume for any two adjacent vertices u and v of G, either $N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}$. Then by Theorem 2.2, $B(G)=K_{n}$. Therefore $B^{2}(G)=B(B(G))=B\left(K_{\mathrm{n}}\right) \cong K_{\mathrm{n}}$ implies G is eventually periodic with iso-period 1.

Conversely, assume $G \in F_{12}$ is eventually periodic. Suppose for any two adjacent vertices neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$. This implies $u v \notin B(G)$. Therefore non-adjacent vertices in G are adjacent in $B(G)$ together with the full degree vertices in G continue to have the same degree in $B(G)$. Hence $B(G) \in F_{12}$. With the assumption of the condition mentioned for adjacent vertices, $B^{2}(G) \cong G$, implies G is periodic which is a contradiction.

Lemma 3.10: If G is not a boundary graph, then G is eventually periodic.
Proof. Since G is not a boundary graph, there is no graph H such that $B(H) \cong G$. Therefore for any $m, B^{m}(H) \neq G, m \geq 1$ and thus G is not a periodic graph. Hence by proposition 3.1, G is eventually periodic.

Lemma 3.11: Let G be a disconnected graph. If G has at least one isolated vertex, then G is eventually periodic.

Proof. Suppose that G has at least one isolated vertex, then by Theorem 2.4, G is not a boundary graph. Hence by Lemma 3.10, G is eventually periodic.

Lemma 3.12: Let $G \in F_{4}$ without isolated vertices. If \bar{G} without complete vertices has the following properties
(i) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of G.
(ii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v of G, where $k=d(u, v)+1$, then G is periodic.

Proof. With the above assumption by Theorem 2.5, G is a boundary graph. Then there exists a graph H such that $B(H) \cong G$. Since G has n vertices, we can find a graph in the set of all graphs with n vertices such that $B^{m}(G) \cong G$ for some least positive integer m. Therefore G is periodic.

Lemma 3.13: Let G be a disconnected graph with at least one complete component. If for any two adjacent vertices u and v in $B(G)$, either $N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}$ then, G is eventually periodic with iso-period 1.

Proof. Let G be a disconnected graph with at least one complete component. Then $B(G) \in F_{12}$. Since for any two adjacent vertices u and v in $B(G)$,either
$N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}, B^{2}(G)$ is complete. Now, consider $B^{3}(G)=B\left(B^{2}(G)\right)=K_{n} \cong B^{2}(G)$. Hence G is eventually periodic with iso-period 1.

Open Problem 3.14: Characterize all disconnected periodic graphs in which each component is non-complete.

Theorem 3.15: Let G be a connected graph. If the following conditions hold in two successive iterations in $B^{k}(G), K \geq 1$
(i) No complete vertex
(ii) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v.
(iii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v where $k=d(u, v)+1$, then G is eventually periodic with iso-period 2 .

Proof. Suppose two successive iterations in $B^{k}(G), K \geq 1$ satisfies (i), (ii) and (iii), then by Theorem 2.3, $B^{k}(G) \cong\left(\overline{B^{k-1}(G)}\right)$ and $B^{k+1}(G) \cong\left(\overline{B^{k}(G)}\right)$. Consider, $B^{k+1}(G) \cong\left(\overline{B^{k}(G)}\right) \cong \overline{\left(\overline{B^{k-1}(G)}\right)}=B^{k-1}(G)$. This proves that G is eventually periodic with iso-period 2.

From the above theorem it is clear that, If G and $B(G)$ holds the conditions in Theorem 3.15 then G is periodic with iso-period 2 .

Remark 3.16: There are some graphs in F_{22} which does not satisfies the condition mentioned in Theorem 3.15, but they are eventually periodic with iso-period 2.
The following example illustrates the above remark.

Fig. 4. The graph G.

The graph mentioned in Fig. 4 does not satisfy the condition in Theorem 3.15 but it is eventually periodic with iso-period 2 .

Conjecture 3.17: We have observed, but not proven that a self centered graph of radius two is eventually periodic with iso-period 2.

Lemma 3.18: Let G be a connected graph .If \bar{G} has the following properties
(i) \bar{G} has no complete vertex.
(ii) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of \bar{G}.
(iii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v of \bar{G}, where $k=d(u, v)+1$, with $B(G) \cong \bar{G}$, then G is periodic with iso-period 2.

Proof. Since \bar{G} has the properties (i), (ii) and (iii) by Theorem 2.3, $B(\bar{G}) \cong G$. $B^{2}(G)=B(B(G)) \cong B(\bar{G}) \cong G$ implies that G is periodic with iso-period 2.

Lemma 3.19: If G is a periodic graph with iso-period $m>1$ and if \bar{G} has the following properties
(i) \bar{G} has no complete vertex.
(ii) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v of \bar{G}.
(iii) either $N_{k}(u)=\phi$ or $N_{k}(v)=\phi$ for any two non-adjacent vertices u and v of \bar{G}, where $k=d(u, v)+1$, then \bar{G} is eventually periodic with iso-period m.

Proof. By hypothesis $B^{m}(G) \cong G$. Then there exists a graph $H=B^{m-1}(G)$ such that $B(H) \cong B\left(B^{m-1}(G)\right) \cong B^{m}(G) \cong G$. This implies G is a boundary graph. By Theorem 2.3 $B(\bar{G}) \cong G$. Consider $\quad B^{m}(G) \cong G$ implies $\quad B^{m}(B(\bar{G})) \cong B(\bar{G})$. Therefore $B^{m+1}(\bar{G}) \cong B(\bar{G})$. Hence \bar{G} is eventually periodic with iso-period m.

Theorem 3.20: A graph G is eventually periodic if and only if one of the following holds
(i) G is a complete n-partite graph with $\left|V_{i}\right| \geq 2$ for each $i^{\text {th }}$ partition.
(ii) $G \in F_{12}$ and for any two adjacent vertices u and v in G either

$$
N(u)-\{v\} \subseteq N(v)-\{u\} \text { or } N(v)-\{u\} \subseteq N(u)-\{v\}
$$

(iii) Any two successive iterations in $B^{k}(G), k \geq 1$ holds the following conditions
(a) No complete vertex
(b) neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$ for any two adjacent vertices u and v.
(c) either $N_{k}(u)=\phi$ or $N(v)=\phi$ for any two non-adjacent vertices u and v where $k=d(u, v)+1$.
(iv) G be a disconnected graph with at least one isolated vertex.
(v) Let G be a disconnected graph with at least one component complete. If for any two adjacent vertices u and v in $B(G)$, either $N(u)-\{v\} \subseteq N(v)-\{u\}$ or $N(v)-\{u\} \subseteq N(u)-\{v\}$.

Proof. If (i) holds, then by Observation 3.7, G is eventually periodic. If (ii) holds, then by Lemma $3.9, G$ is eventually periodic. If (iii) holds true, by Theorem $3.15 G$ is eventually
periodic .If (iv) holds, by Lemma $3.11 G$ is eventually periodic. If (v) holds, then by Lemma $3.13 G$ is eventually periodic.

Conversely, Suppose G is eventually periodic. Assume that (i), (iii), (iv) and (v) do not hold. Now we have to prove that (ii) definitely holds. Suppose this is not. Let $G \in F_{12}$ and for any two adjacent vertices u and v in G neither $N(u)-\{v\} \subseteq N(v)-\{u\}$ nor $N(v)-\{u\} \subseteq N(u)-\{v\}$. This implies $u v \notin B(G)$. Therefore non-adjacent vertices in G are adjacent in $\mathrm{B}(\mathrm{G})$ together with the full degree vertices in G continue to have the same degree in $B(G)$. Hence $B(G) \in F_{12}$. With the assumption of the condition mentioned for adjacent vertices, $B^{2}(G) \cong G$. implies G is periodic which is a contradiction.

Acknowledgments

The authors are thankful to the referee for useful suggestions.

References

1. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).
2. J. Gimbert and N. Lopez, Bull. Inst. Comb. Appl. 56, 19 (2009). http://web.udl.es/usuaris/p4088280/research/abs GLMR08.html
3. J. Gimbert, M. Miller, F. Ruskey, and J. Ryan, Bull. Inst. Comb. Appl. 45, 41 (2005). http://www.cs.uvic.ca/~ruskey/Publications/Eccentric/Eccentric.pdf.
4. K. M. Kathiresan. G. Marimuthu, Ars Combin. 96, 353 (2010).
5. K. M. Kathiresan. G. Marimuthu, S.Arockiaraj, Bull. Inst. Comb. Appl. 57, 21 (2009).
6. G. Marimuthu and M.S. Saraswathy, submitted to Util. Math (2013).

[^0]: * Corresponding author: yellowmuthu@yahoo.com

