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Abstract 

 
We solve numerically Volterra integral equations, of first and second kind with regular and 
singular kernels, by the well known Galerkin weighted residual method. For this, we derive 
a simple and efficient matrix formulation using Laguerre polynomials as trial functions. 
Several numerical examples are tested. The approximate solutions of some examples 
coincide with the exact solutions on using a very few Laguerre polynomials. The 
approximate results, obtained by the present method, confirm the convergence of numerical 
solutions and are compared with the existing methods available in the literature.  
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1.  Introduction 
 
In recent years, there has been a growing interest in the Volterra integral equations arising 
in various fields of physics and engineering [1], e.g., potential theory and Dirichlet 
problems, electrostatics, the particle transport problems of astrophysics and reactor theory, 
contact problems, diffusion problems, and heat transfer problems. Also many initial and 
boundary value problems associated with the ordinary and partial differential equations 
can be cast into the Volterra integral equations.  

Some valid numerical methods, for solving Volterra equations using various 
polynomials [2], have been developed by many researchers. Very recently, Maleknejad et 
al. [3] and Mandal and Bhattacharya [4] used Bernstein polynomials in approximation 
techniques, Shahsavaran [5] solved by Block-Pulse functions and Taylor expansion 
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method. Taylor polynomials were also used by Bellour and Rawashdeh [6] and Wang [7] 
with computer algebra. Maleknejad et al. [8] studied first kind by using a Recursive 
scheme. Bernstein polynomials were used for the solution of second order linear and first 
order non-linear differential equations by Bhatti and Bracken [9]. These polynomials have 
also been used for solving Fredholm integral equations of second kind by Shirin and Islam 
[10].  

However, in this paper a very simple and efficient Galerkin weighted residual [11] 
numerical method is proposed with Laguerre polynomials as trial functions. The 
formulation is derived to solve the linear Volterra integral equations of both first and 
second kind and/or having regular as well as weakly singular kernels, in details, in section 
3. In section 2, we give a short introduction of Laguerre polynomials. Finally, five 
examples of different kinds of Volterra integral equations are given to verify the proposed 
formulation. The results of each example indicate the convergence numerical solutions. 
Moreover, this method can provide even the exact solutions, with a few lower order 
Laguerre polynomials, if the equation is simple. 
 
2. Laguerre Polynomials  
 
The general form of the Laguerre polynomials [2] of nth degree is defined by  
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Using MATLAB code, the first few Laguerre polynomials from Eq. (1) are given 

below: 
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Now the first six Laguerre polynomials over the interval [-5, 20]  are shown in Fig. 1. 
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        Fig. 1. Graph of first 6 Laguerre polynomials over the interval (-5, 20). 

 

3. Formulation of Integral Equation in Matrix Form 

The most standard form of Volterra linear integral equations (VIE) of the first kind [1] is 
of the form  

bxaxfdtttxk
x

a
≤≤=∫ ,)()(),( ϕ                                                                               (2) 

where )(xϕ  is the unknown function, to be determined, ),( txk  the kernel, is a continuous 
or discontinuous, )(xf  being the known function satisfying 0)( =af . 

Now we use the Galerkin weighted residual method [11] to find an approximate 
solution )(~ xϕ  of (2). For this, we assume that  
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where )(xLi are Laguerre polynomials of degree i  defined in Eq. (1), n  is the number of 
Laguerre polynomials, and ia  are unknown parameters, to be determined. Substituting (3) 
into (2), we get 
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Then the Galerkin equations are obtained by multiplying both sides of (4) by )(xL j  

(as weight functions), and integrating the resulting equation with respect to x over the 
interval ],[ ba  to obtain 
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Since in each equation, there are two integrals. The inner integrand of the left side is a 

function of x, and t and is integrated with respect to t from a to x. As a result the outer 
integrand becomes a function of x only and integration with respect to x from a to b yields 
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a constant. Thus for each nj ,,1,0 =  we have a linear equation with 1+n  unknowns 
ai, i = 0, 1, …, n. 

Finally, Eq. (5) represents the system of 1+n  linear equations in 1+n  unknowns, are 
given by 
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The unknown parameters ia  are to be determined by solving the system of Eq. (6), 
and substituting these values of parameters in (3), we get the approximate solution )(~ xϕ  
of the integral Eq. (2). 

Now, we consider the Volterra integral equation (VIE) of the second kind [1] given by 

bxaxfdtttxkxxc
x

a
≤≤=+ ∫ ,)()(),()()( ϕλϕ                                                           (7) 

where, )(xϕ  is the unknown function to be determined, ),( txk  the kernel, is a continuous 
or discontinuous. )(xf , )(xc are known functions and λ  is the constant. Then applying 
the same procedure described as above, we obtain  
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Here the unknown parameters ia  are determined by solving the system of Eqs. (8) and 
substituting these values of parameters in (3), we get the approximate solution )(~ xϕ  of 
the integral Eq. (7). The absolute error for this formulation is defined by  

 
Absolute error )(~)( xx ϕϕ −=  

 
 4.  Numerical Examples 

Here we illustrate the above mentioned methods with the help of five numerical examples, 
which include three first kind and two second kind with regular kernels and weakly 
singular kernels, available in the existing literature [1, 3- 5]. The computations, associated 
with the examples, are performed by MATLAB 7. The convergence of each linear 
Volterra integral equations is calculated by  
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δϕϕ )(~)(~
1 xxE nn −= +  

 
where )(~ xnϕ  denotes the approximate solution by the proposed method using nth degree 

polynomial approximation andδ  varies from 610−  for 10≥n . 
 
Example 1: Consider the VIE of first kind (page 154 [1]) 
 

∫ ≤≤=−
x

tx xxdtt
0

10,)(3 ϕ                                                                                          (9) 

The exact solution is 3log1)( exx −=ϕ . Using the formula derived in the previous 
section and solving the system (6) for 1≥n , we get the approximate solution 
is 3log1)(~

exx −=ϕ , which is the exact solution. 
  
Example 2: Consider an Abel’s integral equation (VIE of first kind with weakly singular 
kernels) of the form [3] 
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The exact solution is 1)( 23 +−= xxxϕ . Results have been shown in Table 1 
for 10=n . Also Fig. 2 shows the exact and approximate solutions on using 2, 3 and 11 
Laguerre polynomials, respectively. The absolute errors obtain in the order of  1610−  on 
using Laguerre polynomials with 10=n . On the other hand, the accuracy is found nearly 
the order of 710−  by Maleknejad et al. [3] on using Bernstein approximation for 10=n . 
 

 
 

Fig. 2. Exact solutions and Numerical solutions of example 2 for n=1, 2 and 10 
 
 
Example 3: Consider an Abel’s integral equation (VIE of first kind with weakly singular 
kernels) of the form [4] 
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∫ ≤≤=
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The exact solution is 2/9

315
1280)( xx πϕ = . Results have been shown in Table 1 for 10=n . 

Also Fig. 3 shows the exact and approximate solutions on using 2, 3, 4 and 11 Laguerre 
polynomials, respectively. The absolute errors obtain in the order of 810−  on using 11 
Laguerre polynomials, while the accuracy were found in [4] by Bhattacharya and Mandal 
nearly the order of 710− on using 11 Bernstein polynomials. 

 

           
 

    Fig. 3. Exact solution and numerical solution of example 3 for n=1-3 and 10. 
 
 
     Table 1.  Computed absolute error of examples 2 – 4 for n = 10.  
 

 Example 2 Example 3 Example 4 

 
Exact 

Solutions 
Absolute Error Exact 

Solutions 
Absolute 

Error 
Exact 

Solutions 
Absolute Error 

 0.0 
 0.1 
 0.2 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 1.0 

1.0000000 
0.9910000 
0.9680000 
0.9370000 
0.9040000 
0.8750000 
0.8560000 
0.8530000 
0.8720000 
0.919000 
1.0000000 

0.0000000E+000 
3.3306691E-016 
0.0000000E+000 
5.5511151E-016 
7.7715612E-016 
0.0000000E+000 
1.6653345E-015 
1.5543122E-015 
1.1102230E-016 
4.4408921E-016 
1.7763568E-015 

 0.0000000 
 0.0000409 
0.0009255 
0.0057385 
0.0209421 
0.0571629 
0.1298465 
0.2598309 
0.4738648 
0.8050833 

 1.2934497 

0.0000000E+000 
1.4502586E-008 
7.8727334E-009 
2.0173076E-008 
8.4781877E-009 
1.3312508E-008 
2.4497113E-010 
5.6635984E-008 
3.6901042E-008 
2.0402750E-008 
2.1811684E-007 

 0.0000000 
0.0000001 
0.0000128 
0.0002187 
0.0016384 
0.0078125 
0.0279936 
0.0823543 
0.2097152 
0.4782969 
 1.0000000 

 0.0000000E+000 
1.3790466E-011 
1.5311828E-011 
8.1805515E-012 
2.4509244E-011 
1.4551915E-011 
4.6102080E-011 
1.8066840E-010 
5.3086729E-011 
8.3868856E-011 
4.3655746E-011 

 
 
Example 4: Consider the weakly singular VIE of second kind [4] 
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The exact solution is 7)( xx =ϕ . Results have been shown in Table 1 for 10=n . Also 
Fig.4 shows the exact and approximate solutions on using 2, 3, 4 and 11 Laguerre 
polynomials, respectively. The absolute errors obtain in the order of 1110−  on using 11 
Laguerre polynomials while the accuracy was found in Ref. [4] nearly the order of 710−  
using 11 Bernstein polynomials. 

 

                      

Fig. 4. Exact solutions and Numerical solutions of example 4 for n=1-3 and 10. 
 
Example 5: Consider the weakly singular VIE of second kind [5]           
 

∫ ≤≤+=
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)(
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The exact solution is 2)( xx =ϕ . Using the formula derived in the previous section and 

solving the system (8) for 2≥n , we get the approximate solution is 2)(~ xx =ϕ , which is 

the exact solution. On the contrary, the accuracy is found nearly the order of 310−  for 
32=n (number of Block-Pulse functions) by Shahsavaran [5] using Block-Pulse 

functions and Taylor expansion by collocation method. 

5.  Conclusions 

A very simple and efficient Galerkin weighted residual method based on the Laguerre 
polynomial basis has been developed to solve first kind, second kind and also singular 
Volterra integral equations. Numerical results have been obtained in Table-1 with great 
accuracy in comparison with the numerical results obtained by using Bernstein 
polynomials [3, 4] and also by other techniques. It is observed that the approximate results 
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converge monotonically to the exact solutions. We notice that the approximate solutions 
coincide with the exact solutions even a few of the polynomials are used in the 
approximation which are shown in examples 1 and 5. We may realize that this method 
may be applied to solve other integral equations for the desired accuracy.  
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