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Abstract 

 
One of the major assumptions of the regression analysis is the normality assumption of the 
model error. We generally assume that the error term of the simple linear regression model 
is normally distributed. But in this paper g-and-k distribution is used as the underlying 
assumption for the distribution of error in simple linear regression model and a numerical 
study is conducted to see what extent of the deviation from normality causes what extent of 
effect on the size and power of t-test for simple linear regression model with the deviation 
being measured by a set a of skewness and kurtosis parameters. The strength of t-test is 
evaluated by observing the power function of t-test. The simulation result shows that, the 
performance of the t-test for simple linear regression model with g-and-k error distribution is 
seen to be vastly affected in presence of excess kurtosis and small samples (i.e. n<100).t-test 
is size robust under normal situation. Skewness and kurtosis parameter has a very little 
effect on the size of the t-test. 
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1. Introduction  
 
Most of the statistical procedures such as t-test, tests for regression coefficients, analysis 
of variance, and the F-test of homogeneity of variance have a fundamental assumption 
that the sampled data come from a normal distribution. The assumption of normality in a 
statistical procedure requires an effective test of whether the assumption holds, or a 
vigilant argument showing that violation of assumption does not invalidate the procedure 
used. Much statistical research has been concerned with evaluating the effect of the 
violations of assumption on the true significance level of a test or the efficiency of the 
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parameter estimates. In this manuscript, we focus on the power of regression tests by 
considering the error term of the simple linear regression model to follow the g-and-k 
distribution and observe the extent of the effect of deviation from normality on the size 
and power of regression tests for simple linear regression model with the deviation being 
measured by a set of skewness and kurtosis parameter.  
     There have been a wide range of studies on the influences of non-normality on several 
statistical test procedures during the last several decades. Swailowsky and Blair [1] 
evaluated the Type I and II error properties of the t-test by means of a Monte Carlo Study. 
Chen [2] investigated the upper-tailed test for the mean of the positively skewed 
distribution. He proposed a modified t-test. A Monte Carlo study investigated the new 
procedures for a variety of positively skewed distributions with small sample sizes and he 
found that the new test procedure is more accurate and more powerful than both Johnson 
modified t-test and Sutton’s composite test. He also suggested that the new procedure is 
good choice for use as an upper tailed test of the mean of a positively skewed distribution 
with a slightly large or large skewness when the sample size is small. From the Monte 
Carlo studies he also found that the right tail of the sampling distribution of the new 
procedure is somewhat robust. Carolan and Rayner [3] derived a score test of location 
from a distorted normal distribution and compared the performance of the test to t-test and 
Wilcoxon test for symmetrical data from such a distribution by a simulation study. 
Carolan and Rayner [4] showed that standard tests of location such as t- test and Wilcoxon 
test, Which test for mean and median respectively, can perform poorly as tests when the 
data is other than unimodal and symmetric. Khan and Rayner [5] studied the effect of 
deviating from normal distribution assumption when considering the power of two many-
sample location test procedures: ANOVA (parametric) and Kruskal-Wallis (non-
parametric). Rasch and Gulard [6] performed a systematic research of the robustness of 
statistical procedures against non-normality. Yanagihara [7] presented the conditions for 
robustness to the non-normality on three test statistics for a general multivariate linear 
hypothesis, which were proposed under the normal assumption in a generalized 
multivariate analysis of variance (GMANOVA) model. Borhan and Khan [8] have studied 
about the sensitivity to non-normality of one sample t –test, Wilcoxon test and Z-test. 
Schmider et al. [9] carried out the empirical evidence to the robustness of the analysis of 
variance (ANOVA) concerning violation of the normality by means of Monte Carlo 
methods. Uddin et al. [10] examined the non-normality in the form of skewness and 
kurtosis in lot acceptance quality characteristics data. Their investigation showed that high 
skewness and kurtosis were associated with higher lot variability. This variability 
produced misleading results in regard to inflated Type-I error and low power of F-test. 
They also found the t-test to be quite robust for distinguishing mean differences. Very 
recently, Landau and stahl [11] showed how Monte Carlo simulation can be used for 
sample size, power or precision calculations when planning medical research studies. 
     It is clear that measuring power using g-and-k distribution has received great interest in 
recent years. But so far, a little study has been attempted to investigate the extent of effect 
of non-normality on the size and power of various regression tests for simple linear 
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regression model. Hence, in this paper the extent of effect of non-normality on the power 
is investigated by varying the skewness and kurtosis parameter of g-and-k distribution and 
measured numerically.  
 
2. The g-and-k Distribution 
 
Rayner and MacGillivray [13] examined the effect of non-normality on the distribution of 
(numerical) maximum likelihood estimators. The g-and-k distribution [12] can be defined 
in terms of its quantile function as: 
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where A and B > 0 are location and scale parameters respectively, g measures skewness in 
the distribution, k> – ½ measures kurtosis (in general sense of peakness/tailedness) in the 
distribution and zu )(1 u−= φ  is the u th quantile of a standard normal variate, and c is a 
constant chosen to help produce proper distributions. It can be clearly observed that for    
g = k = 0, the quantile function in (1) is just the quantile function of a standard normal 
variate. 
     The sign of the skewness parameter indicates the direction of skewness; g < 0 indicates 
the distribution is skewed to the left, and g > 0 indicates skewed to the right. 
Increasing/decreasing the unsigned value of increases/decreases the skewness in the 
indicated direction. When g = 0 the distribution is symmetric. The kurtosis parameter k, 
for the g-and-k distribution, behaves similarly. 
     Increasing k increases the level of kurtosis and vice versa. The value k = 0 corresponds 
to no extra kurtosis added to the standard normal base distribution. However, this 
distribution can represent less kurtosis than the normal distribution, as k > –1/2 can 
negative values. If curves with more kurtosis required then base distribution with less 
kurtosis than standardized normal distribution can be used. 
     For these distributions c  is the value of ‘overall symmetry’ (MacGillivray). For an 
arbitrary distribution, theoretically the overall asymmetry can be as large as one, so it 
would appear that for c < 1, data or distribution could occur with skewness that cannot be 
matched by these distributions. However for g ≠ 0, the larger the value chosen for c, the 
more restrictions on k are required to produce a completely proper distribution. Real data 
seldom produce overall asymmetry values greater than 0.8.We have used c = 0.83 
throughout this paper. To examine extent of the effect of different level of non-normality 
on the test of conventional linear regression model we have considered that the random 
error belongs to the g-and-k distribution. 
 
3. Robustness  
 
Robustness occurs when the nominal and actual test sizes are not drastically different 
under slight model failure. When the validity of a certain test result is not extremely 
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affected by poorly structured data, then the test is considered robust. So the technical 
definition of robustness is: if the actual Type I error of a test is close to the proclaimed 
Type I rate, say 0.05, then the test is said to be robust. In other words it is resistant against 
the violation of assumptions. 
 
4. Regression Model 
 
We have considered a basic regression model where there is only one independent 
variable and the regression function is linear. The model [14] can be stated as follows: 
 

iiXiY εββ ++= 10                                                                                                      (2)  
 

where iY  is the value of the response variable in the ith trial, 0β and 1β are intercept and 
slope parameter, iX is the value of the independent variable in the ith trial, iε  is a 
random error term with mean  ( ) 0=iE ε and variance ( ) 2σε =iV , iε and jε are 
uncorrelated so that the covariance, ( ) 0, =jiV εε for all i,j; i≠ j ; i = 1, 2,….., n. 
     Model (2) is said to be simple, linear in the parameters, and linear in the independent 
variable. It is “simple” in a sense that there is only one independent variable, “linear in the 
parameters” because of the sense that no parameter appears as an exponent or is 
multiplied or divides by another parameter and “linear in independent variable’’ because 
this variable appears only in the first power. A model which is both linear in the parameter 
and the independent variable is also called first-order model. 
     The parameters 0β  and 1β  in regression model (2) are called regression coefficients. 

1β  is the slope coefficient of the regression line. It measures the change in the mean of 
the probability distribution of Y per unit increase in X. The parameter 0β is the intercept 
coefficient of the regression line. If the scope of the model includes, X = 0, 0β  gives the 
mean of the probability distribution of Y at X = 0 . When the scope of the model does not 
cover X = 0, 0β does not have any particular meaning as a separate term in the regression 
model. 
 
5. Simulation Technique 
 
In this paper, we have considered simple linear regression model with one explanatory 
variable. As we know, in simple linear regression model, the error term iε are normally 
distributed. But in this paper, we assumed the random error term iε  to follow the g-and-k 
distribution. We have observed the extent of non-normality on the size and power of 
test 0H : slope = 0 by varying the skewness and the kurtosis parameter of the g-and-k 
distribution. Using the g-and-k distribution allows us to quantify how much the data 
depart from normality in terms of the values chosen for the g (skewness) and k (kurtosis) 
parameters. For g = k = 0, the quantile function for g-and-k distribution is just the quantile 
function of a normal variate. 
     In order to observe the power of the tests, expressions for the power curve are required. 
However, in practice it is not practical to obtain analytic expressions for these power 
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functions. Instead, we have conducted a simulation to estimate these power functions for 
various combinations of the g and k parameter values for the error distribution from the g-
and-k distribution. In simulating size and power, we have considered a simple linear 
regression model of y with one explanatory variable x where the explanatory variable was 
generated from Uniform distribution. The values of the slope coefficient 1β  are to be 
varied from -4 to 4. The distribution of error is taken as g-and-k distribution where the 
values of skewness parameter g is taken from (-2, 2) and kurtosis parameter are -0.5, 0, 
0.5, 1. While considering the distribution, the location parameter of the distribution A is 
taken to be 0, scale parameter B is taken as 1, constant c is considered as 0.83. The 
random variable z (0, 1) is a standard normal random variate. To get the power of t-test, 
we test 0H : 1 0β = against the alternative 1H : 1 0β ≠ . For each combination of g and k, we 
determine the number of rejections of the null hypotheses out of 10,000 times simulation 
for each value of 1β  other than zero and divide the total number of rejections by 10,000 
which gives the power of the test. To get the size we generate data under the null 
hypotheses and repeat the above procedure. We have considered different combinations of 
g and k for different sample size n = 10, 20, 30 and 100. The level of significance is 
considered as 0.05 throughout the simulation. The above procedure is conducted by using 
statistical software R. 
 
6. Size of t-test  
 
The probability of rejecting a true null hypothesis is called type I error. It is also known as 
size of the test. First, we consider the effect of non-normality on the size of the test. For 
simulating, the size of t-test we generate explanatory variable x  from uniform distribution 
and the random error ε  from g-and-k distribution with location and scale parameters A = 
0 and B = 1, respectively. Using statistical software R we generate data for sample size 10, 
20, 30 and 100, and test   
       

0 1: 0.H β =  
 

Against the alternative, 
 

1 1: 0.H β ≠  
 

The test statistic is: 
 

1

1

ˆ
ˆ( )

t
se
β
β

= ~ 2−nt    under 0H  where, se=standard error 

 
To determine the size of the test, we generate data under the null hypothesis and repeat 

the test 10,000 times and divide the total number of times the hypothesis is rejected by 
10,000. Tests are carried out using a nominal size of α = 0.05. In Table 1 some simulation 
results are documented to see the effect of different level of non-normality on the size of t-
test. For sample size 10, t-test is size robust under normal situation, but under non-normal 
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situation, if the contamination is small there is a little effect on the size of the test. For 
sample size 20 and 30, we see that both the skewness and kurtosis parameter has very 
little effect on the size of t-test. For sample size 100, even in the case of non-normal 
situation, t-test is almost size robust. 

 
 

Table 1.  Size of t-test for different combinations of (g,k) with varying sample sizes. 
 

n g k Size n g k Size 

10 0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
0.7 
1.0 

0.0 
0.3 
0.5 
0.8 
1.0 
-0.2 
-0.3 
-0.5 
0.0 
0.0 
0.0 

0.051 
0.0466 
0.0399 
0.0386 
0.0372 
0.0492 
0.0546 
0.0513 
0.0479 
0.0496 
0.0481 

20 0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 

0.0 
0.3 
0.5 
0.8 
1.0 
-0.2 
-0.3 
-0.5 
0.0 
0.0 
0.0 

0.0508 
0.0484 
0.0443 
0.041 
0.0356 
0.0534 
0.0507 
0.0515 
0.0479 
0.0522 
0.0452 

30 0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 

0.0 
0.3 
0.5 
0.8 
1.0 
-0.2 
-0.3 
-0.5 
0.0 
0.0 
0.0 
0.0 

0.0536 
0.0454 
0.0471 
0.0477 
0.0399 
0.0502 
0.0510 
0.0518 
0.0485 
0.0486 
0.0454 
0.0478 

100 0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 

0.0 
0.3 
0.5 
0.8 
1.0 
-0.2 
-0.3 
-0.5 
0.0 
0.0 
0.0 
0.0 

0.0522 
0.0488 
0.0492 
0.0529 
0.0438 
0.0465 
0.0505 
0.0484 
0.0495 
0.051 
0.0524 
0.0494 

 
 
7.  Power of t-test 
 
Power of the test is an important and considerable matter. Powerful test gives better 
conclusion, so it is desired to use powerful test. The probability of accepting a false null 
hypothesis is called Type II error. The power of the test is the probability that the Type II 
error will not occur. 
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To simulate power, we test .0: 10 =βH  
Against the alternative,      .0: 11 ≠βH      

 

The test statistic is: 
 

)ˆ(

ˆ

1
1
β
β

se
t = ~ 2−nt  under 0H  

       
 where, se=standard error. 

We generate data using ∈1β (-4, -3.5, -3.0… 3.0, 3.5, 4) and repeat the test procedure 
10,000 times. We first determine the number of rejections of the test out of 10,000 times 
for each value in the mentioned set and divide the total number of rejections by 10,000, 
with the level of significance α = 0.05.We generate power for sample size n=10, 20, 30, 
and 100 with various combinations of shape parameters g and k to see the extent of effect 
of skewness and kurtosis on the power of t-test.  

Figs. 1 through 7 show the power curve of t-test with various combinations of (g,k) for 
sample size n = 10, 20, 30, and 100. In Fig. 1, for sample size 10, from the curves of (g,k) 
= (0,0), (0,0.3), (0,0.5), (0,0.8), (0,1), we see that for fixed g = 0 and varying the kurtosis 
parameter k in positive direction the power of the test decreases vastly than that of the 
normal data (g,k) = (0,0). The curves of (g,k) = (0,0), (0.5,0), (0.7,0), (1,0) shows that for 
fixed k = 0, and varying the skewness parameter g, the power of the t-test decreases 
slightly than that of normal data. The curves of (g,k) = (0,0), (0.5,0), (0,0.5), (0.5,0.5) and 
(0,0), (1,0), (0,1), (1,1) shows that increasing kurtosis parameter reduces the power more 
than that of the skewness parameter. In Fig. 2, from the curves of (g,k) = (0,0), (0,-0.2), 
(0,-0.3), (0,-0.5), we see the effect of negative kurtosis on the power and it is seen that 
when the kurtosis parameter increases in negative direction t-test gives better power than 
that of normal data. The curves of (g,k) = (0,0), (0.5,0), (0,-0.3), (0,-0.5) shows that 
negative kurtosis increases the power than that of normal data whereas varying the 
skewness parameter g decreases the power slightly. Fig. 3 also shows the same pattern of 
change in power in varying the skewness and kurtosis parameter for sample size 20. In 
Fig. 4, the curve of (g,k) = (0,0), (-0.5,0), (-1,0), (-1.5, 0), (-2,0) shows that when the 
values of g increases in negative direction the power turn down slightly than that of 
normal curve. Fig. 5 and Fig. 6 shows the change of power for different combination of 
(g,k) for sample size 30 in the same way. In Fig. 7, for sample size n = 100, the curves of 
(g,k) = (0,0), (0,0.3), (0,0.5), (0,0.8), (0,1), shows that the loss of power increases when 
the kurtosis parameter is increased in positive direction whereas the curves of (g,k) = 
(0,0), (0.5,0), (1,0), (1.5,0), (2,0) shows the t-test to some extent robust for varying the 
skewness parameter in positive direction. Fig. 7 shows that for large sample size i.e. n = 
100 the difference between the power in normal and non-normal situation decreases to 
some extent. 
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Fig.  1.  Power curves of t-test with various combinations of (g,k) for sample size 10. 
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Fig.  2 . Power curves of t-test with various combinations of (g,k) for sample size 10. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  3.  Power curves of t-test with various combinations of (g,k) for sample size 20. 
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

─ g=0,k=0 ─ g=0,k=-.3 
─ g=.5,k=0 ─ g=0,k=-.5 

  
 

─ g= 0,k=0 ─ g=.5,k=.5 
─ g=.7,k=0 ─ g=.7,k=.8 

  
 

─ g=0,k=0 ─ g=0,k=.8 
─ g=0,k=.3 ─ g=0,k=1 
─ g=0,k=.5  

  
 

─ g=0,k=0 ─ g=1.5,k=0 
─ g=.5,k=0 ─ g=2,k=0 
─ g=1,k=0  

  
 

─ g=0,k=0 ─ g=0,k=.5 
─ g=.5,k=0 ─ g=.5,k=.5 

  
 

─ g=0,k=0 ─ g=0,k=1 
─ g=1,k=0 ─ g=1,k=1 

  
 



618 Power of t-test 
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

Beta 

Po
w

er
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   

  

 

 

 

 

 

      Fig.  4.  Power curves of t-test with various combinations of (g,k) for sample size 20. 
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Fig.  5.  Power curves of t-test with various combinations of (g,k)  for sample size 30. 
 

 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  6.  Power curves of t-test with various combinations of (g,k)  for sample size 30. 
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Fig.  7.  Power curves of t-test with various combinations of (g,k) for sample size 100. 
 
 
 

8.  Results and Discussion  
 
Observations from Figs. 1 through 7 indicate that t-test is neither optimally robust nor size 
robust under non-normal situation. The power of the test is badly affected by the sample 
skewness and kurtosis parameter. If the contamination is small, skewness and kurtosis 
parameter has little effect on the size of the test. The simulation results can be summarized 
in the following ways: 
 

a. Comparing Fig. 1, Fig. 3, Fig. 5, and Fig. 7, it is apparent that as the value of the 
kurtosis parameter k increases in positive direction, t-test gives less power than that 
of normal data. 
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b. From the Fig 1 to Fig. 7 we can say that as the sample size increases, the difference 
between the powers in normal and non-normal situation decreases. 

c. From Fig. 1, Fig. 3, Fig. 5, and Fig. 7, the loss of power increases slightly than that 
of the normal data as the skewness parameter g increases. Skewness parameter has 
very little effect on the power of the test. 

d. From Fig. 2, Fig. 4, Fig. 6 and Fig. 7, it is clear that t-test gives better power than 
that of the normal situation when the data have negative kurtosis. 

e. From Fig. 4 and Fig. 6, it is clear that the power of the test decreases slightly than 
that of the normal data when the skewness parameter g increases in positive or 
negative direction. 

f. From Table 1 we can say that the skewness parameter g and the kurtosis parameter 
k have a little effect on the size of the t-test.  

 
9.   Conclusion 
 
Extent of effect on power of t-test for simple linear regression model is measured 
numerically and power curves are shown graphically. We can distil our study into the 
following four observations: 
 

a. As the value of the parameter k increases in positive direction, t-test gives less 
power than that of normal data and in case of negative kurtosis it gives better 
power. 

b. Skewness parameter g has a very little effect on the power of the test. 
c. As the sample size increases the difference between the power in normal and non-

normal situation decreases. 
d. Kurtosis parameter has more effect on the size and power of the test than that of 

skewness parameter for simple linear regression model. 
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