

Publications

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 4 (2), 373-382 (2012)

www.banglajol.info/index.php/JSR

Some Features of α -Regular Spaces in Supra Fuzzy Topology

M. F. Hoque^{1*}, M. S. Hossain² and D. M. Ali²

¹Department of Mathematics, Pabna Science and Technology University, Pabna-6600, Bangladesh ²Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received 11 September 2011, accepted in final revised form 17 April 2012

Abstract

We introduce and study supra fuzzy α -regular spaces and we establish some relationships among them in this paper. We also study some other properties of these concepts and obtain their several features.

Keywords: Fuzzy regular spaces; Supra fuzzy regular spaces.

© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v4i2.8157 J. Sci. Res. **4** (2), 373-382 (2012)

1. Introduction

The fundamental concept of a fuzzy set was introduced by Zadeh [1] in 1965 to provide a foundation for the development of many areas of knowledge. Chang [2] in 1968 and Lowen [3] in 1976 developed the theory of fuzzy topological spaces using fuzzy sets. In 1983, Mashhour [4] introduced supra topological spaces and studied s-continuous functions and s^* -continuous functions. In 1987, Abd EL-Monsef [5] introduced the fuzzy supra topological spaces and studied fuzzy supra continuous functions and characterized a number of basic concepts. A note on fuzzy regularity concepts was given by Ali [6] in 1990. In this paper, we study some features of regular spaces and obtain their certain characterizations in supra fuzzy topological spaces. As usual I = [0, 1] and $I_I = [0, 1)$.

Definition 1.1 [1]: For a set X, a function $u: X \to [0,1]$ is called a fuzzy set in X. For every $x \in X$, u(x) represents the grade of membership of x in the fuzzy set u. Some authors say that u is a fuzzy subset of X. Thus a usual subset of X, is a special type of a fuzzy set in which the range of the function is $\{0, 1\}$.

Definition 1.2 [1]: Let *X* be a nonempty set and *A* be a subset of *X*. The function

.

 $^{^*}$ Corresponding author: fazlul_math@yahoo.co.in

$$1_A: X \to [0, 1]$$
 defined by $1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

is called the characteristic function of A. We also write I_x for the characteristic function of $\{x\}$. The characteristic functions of subsets of a set X are referred to as the crisp sets in X.

Definition 1.3 [2]: Let X be a non empty set and t be the collection of fuzzy sets in I^X . Then t is called a fuzzy topology on X if it satisfies the following conditions:

- (i) $1, 0 \in t$,
- (ii) If $u_i \in t$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t$.
- (iii) If u_1 , $u_2 \in t$ then $u_1 \cap u_2 \in t$.

If t is a fuzzy topology on X, then the pair (X, t) is called a fuzzy topological space (fts, in short) and members of t are called t- open (or simply open) fuzzy sets. If u is open fuzzy set, then the fuzzy sets of the form l- u are called t- closed (or simply closed) fuzzy sets.

Definition 1.4 [3]: Let X be a nonempty set and t be a collection of fuzzy sets in I^X such that

- (i) $1, 0 \in t$,
- (ii) If $u_i \in t$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t$.
- (iii) If u_1 , $u_2 \in t$ then $u_1 \cap u_2 \in t$.
- (iv) all constant fuzzy sets in X belong to t.

Then t is called a fuzzy topology on X.

Definition 1.5 [4]: Let X be a nonempty set. A subfamily t^* of I^X is said to be a supra topology on X if and only if

- (i) $1, 0 \in t^*$,
- (ii) If $u_i \in t^*$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t^*$.

Then the pair (X, t^*) is called a supra fuzzy topological spaces. The elements of t^* are called supra open sets in (X, t^*) and complement of supra open set is called supra closed set.

Example 1.6 Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 0.8, u(y) = 0.6 and v(x) = 0.6, v(y) = 0.8. Then we have $w(x) = (u \cup v)(x) = 0.8$, $w(y) = (u \cup v)(y) = 0.8$ and $k(x) = (u \cap v)(x) = 0.6$, $k(y) = (u \cap v)(y) = 0.6$. If we consider t^* on X generated by $\{0, u, v, w, 1\}$, then t^* is supra fuzzy topology on X but t^* is not fuzzy topology. Thus we see that every fuzzy topology is supra fuzzy topology but the converse is not always true.

Definition 1.7 [4]: Let (X, t) and (X, s) be two topological spaces. Let t^* and s^* are associated supra topologies with t and s respectively and $f:(X, t^*) \to (Y, s^*)$ be a function. Then the function f is a supra fuzzy continuous if the inverse image of each i.e., if for any $v \in s^*$, $f^{-1}(v) \in t^*$. The function f is called supra fuzzy homeomorphic if and only if f is supra bijective and both f and f^{-1} are supra fuzzy continuous.

Definition 1.8 [4]: Let (X, t^*) and (Y, s^*) be two supra topological spaces. If u_1 and u_2 are two supra fuzzy subsets of X and Y respectively, then the Cartesian product $u_1 \times u_2$ is a supra fuzzy subset of $X \times Y$ defined by $(u_1 \times u_2)(x, y) = \min [u_1(x), u_2(y)]$, for each pair $(x, y) \in X \times Y$.

Definition 1.9[10]: Suppose $\{X_i, i \in \Lambda\}$, be any collection of sets and X denoted the Cartesian product of these sets, i.e., $X = \prod_{i \in \Lambda} X_i$. Here X consists of all points $p = \langle a_i \rangle$, where $a_i \in X_i$. For each $j_o \in \Lambda$, we define the projection $\pi_{jo}: X \to X_{jo}$ by π_{jo} ($\langle a_i : i \in \Lambda \rangle$)= a_{jo} . These projections are used to define the product supra topology.

Definition 1.10 [10]: Let $\{X_{\alpha}\}_{\alpha \in \Lambda}$ be a family of nonempty sets. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ be the usual product of X_{α} 's and let $\pi_{\alpha}: X \to X_{\alpha}$ be the projection. Further, assume that each X_{α} is a supra fuzzy topological space with supra fuzzy topology t_{α}^* . Now the supra fuzzy topology generated by $\{\pi_{\alpha}^{-1}(b_{\alpha}): b_{\alpha} \in t_{\alpha}^*, \alpha \in \Lambda\}$ as a sub basis, is called the product supra fuzzy topology on X. Thus if w is a basis element in the product, then there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda$ such that $w(x) = \min\{b_{\alpha}(x_{\alpha}): \alpha = 1, 2, 3, \ldots, n\}$, where $x = (x_{\alpha})_{\alpha \in \Lambda} \in X$.

Definition 1.11 [5]: Let (X, T) be a topological space and T^* be associated supra topology with T. Then a function $f: X \rightarrow R$ is lower semi continuous if and only if $\{x \in X: f(x) > \alpha\}$ is open for all $\alpha \in R$. The lower semi continuous topology on X associated with T^* is $\omega(T^*) = \{\mu: X \rightarrow [0,1], \mu \text{ is sup } ra \text{ } lsc\}$. If $\omega(T^*): (X, T^*) \rightarrow [0,1]$ be the set of all lower semi continuous (lsc) functions, then we can easily show that $\omega(T^*)$ is a supra fuzzy topology on X. Let P be the property of a supra topological space (X, T^*) and P be its supra fuzzy topological analogue. Then P is called a 'good extension' of P " if and only if the statement (X, T^*) has P if and only if $(X, \omega(T^*))$ has P " holds good for every supra topological space (X, T^*) .

2. α-Regular Spaces in Supra Fuzzy Topology

Definition 2.1: Let (X, t) be a fuzzy topological space and t^* be associated supra topology with t and $\alpha \in I_1$. Then

- (a) (X, t^*) is an α SFR (i) space if and only if for all $w \in (t^*)^c$ with w(x) < 1, $\forall x \in X$, there exist $u, v \in t^*$ such that u(x) = 1, v(y) =
- (b) (X, t^*) is an α -SFR(ii) space if and only if for all $w \in (t^*)^c$ with w(x) < 1, $\forall x \in X$, there exist $u, v \in t^*$ such that $u(x) > \alpha$, v(y) = 1, $y \in w^{-1}\{1\}$ and $u \cap v \le \alpha$.

- (c) (X, t^*) is an α -SFR(iii) space if and only if for all $w \in (t^*)^c$ with $w(x) = 0, \forall x \in X$, there exist $u, v \in t^*$ such that $u(x) = 1, v(y) = 1, y \in w^{-1}\{1\}$ and $u \cap v \leq \alpha$.
- (d) (X, t^*) is an α -SFR(iv) space if and only if for all $w \in (t^*)^c$ with $w(x) = 0, \forall x \in X$, there exist $u, v \in t^*$ such that $u(x) > \alpha, v(y) = 1, y \in w^{-1}\{1\}, u \cap v \leq \alpha$.

Theorem 2.2: Let (X, t) be a fuzzy topological space and t^* be associated supra topology with t. Then the following implications are true:

(a) (X, t^*) is α - SFR(i) implies (X, t^*) is α - SFR(ii) implies (X, t^*) is α - SFR(iv). (b) (X, t^*) is α - SFR(i) implies (X, t^*) is α - SFR(iv). Also, these can be shown in a diagram as follows:

Proof. First, suppose that (X, t^*) is α - SFR (i). We have to prove that (X, t^*) is α - SFR(ii). Let $w \in (t^*)^c$ with w(x) < 1, $x \in X$. Since (X, t^*) is α -SFR(i), for $\alpha \in I_1$, there exist $u, v \in t^*$ such that u(x) = 1, v(y) = 1

Next, Suppose that (X, t^*) is α - SFR (ii). Let $w \in (t^*)^c$ with w(x) < 1, $x \in X$, then for $\alpha \in I_I$, there exist $u, v \in t^*$ such that u(x) > 1, v(y) = 1, $y \in w^{-1}\{1\}$ and $u \cap v \leq \alpha$. Now, we see that $u(x) > \alpha$, v(y) = 1, $y \in w^{-1}\{1\}$ and $u \cap v \leq \alpha$. Hence by definition (X, t^*) is α -SFR (iv). In the same way, we can prove that

$$(X, t^*)$$
 is α - SFR(i) \Rightarrow (X, t^*) is α - SFR(iii) . (X, t^*) is α - SFR(ivi) . (X, t^*) is α - SFR(ivi) .

Now, we give some examples to show the non implication among α - SFR (i), α - SFR (ii), α - SFR (iii) and α - SFR (iv).

Example 2.3: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 0.9, u(y) = 0, v(x) = 0.5 and v(y)=1. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{ constants}\}$. Then for w = I - u and $\alpha = 0.7$, we see that (X, t^*) is α -SFR(ii) but (X, t^*) is not α -SFR(i). **Example 2.4:** Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x)=0.2, u(y)=0.3, v(x)=0.3,

Example 2.4: Let $X = \{x, y\}$ and $u, v \in I^*$ are defined by u(x) = 0.2, u(y) = 0.3, v(x) = 0.3, v(y) = 0.2. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, 1, \text{Constants}\}$. Then for w = I - u and $\alpha = 0.5$, we see that (X, t^*) is α - SFR(iii) and (X, t^*) is α - SFR(ii) as they do not exist any $u, v \in t^*$ such that $u(x) > \alpha$, v(y) = 1, $y \in w^{-1}\{1\}$ and $u \cap v \leq \alpha$.

Example 2.5: Let $X = \{x, y\}$ and $u, v, w \in I^X$ are defined by u(x) = 0.9, u(y) = 0, v(x) = 0.5, v(y) = 1, w(x) = 1, w(y) = 0. Consider the supra fuzzy topology t^* on X generated

by $\{0, u, v, w, 1, \text{Constants}\}$. Then for $\alpha = 0.6$ and p = 1 - w, it is seen that (X, t^*) is $\alpha - \text{SFR}(iv)$ but (X, t^*) is not $\alpha - \text{SFR}(iii)$.

This completes the proof.

Theorem 2.6: If α , $\beta \in t^*$ with $0 \le \alpha \le \beta < 1$, then

- (a) (X, t^*) is α -SFR(i) implies (X, t^*) is β SFR(i).
- (b) (X, t^*) is α SFR(iii) implies (X, t^*) is β SFR(iii).

Proof. Suppose that (X, t^*) is α - SFR (i). We have to prove that (X, t^*) is β - SFR (i). Let $w \in (t^*)^c$ and $x \in X$ with w(x) < 1. Since (X, t^*) is α - SFR (i), for $\alpha \in I_I$, there exist $u, v \in t^*$ such that u(x) = 1, v(y) = 1,

Example 2.7: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = 1, u(y) = 0, v(x) = 0.7, v(y)=1. Consider the supra fuzzy topology t^* on X generated by $\{0, u, v, I, \text{ constants }\}$. Then for w=I-u, $\alpha=0.8$, $\beta=0.6$. We see that (X, t^*) is β -SFR (i) but (X, t^*) is not α -SFR(i). In the same way, we can prove that

$$(X, t^*)$$
 is α - SFR (iii) implies (X, t^*) is β - SFR (iii).

Theorem 2.8: Let (X, t^*) be a supra fuzzy topological space and $I_{\alpha}(t^*) = \{u^{-1}(\alpha, 1] : u \in t^*\}$, then (X, t^*) is 0 - SFR (i) implies $(X, I_0(t^*))$ is Regular.

Proof. Suppose (X, t^*) be a 0 –SFR (i). We have to prove that $(X, I_0(t^*))$ is Regular. Let V be a closed set in $I_0(t^*)$ and $x \in X$ such that $x \notin V$. Then $V^c \in I_0(t^*)$ and $x \in V^c$. So, by the definition of $I_0(t^*)$, there exists an $u \in t^*$ such that $V^c = u^{-1}(0, 1]$, i.e., u(x) > 0. Since $u \in t^*$, then u^c is closed supra fuzzy set in t^* and $u^c(x) < 1$. Since (X, t^*) is 0 –SFR(i), there exist v, $w \in t^*$ such that v(x) = 1, $w \ge 1_{(u^c)^{-1}\{1\}}$, $v \cap w = 0$.

- (a) Since $v, w \in t^*$ then $v^{-1}(0, 1], w^{-1}(0, 1] \in I_0(t^*)$ and $x \in v^{-1}(0, 1]$
- (b) Since $w \ge 1_{(u^c)^{-1}\{1\}}$ then $w^{-1}(0,1] \supseteq (1_{(u^c)^{-1}\{1\}})^{-1}(0,1]$.
- (c) And $v \cap w = 0$, mean $(v \cap w)^{-1}(0, 1] = v^{-1}(0, 1] \cap w^{-1}(0, 1] = \phi$.

Now, we have

$$\begin{pmatrix}
1_{(u^c)^{-1}\{1\}}
\end{pmatrix}^{-1}(0,1] = \{x : 1_{(u^c)^{-1}\{1\}}(x) \in (0,1] \}
= \{x : 1_{(u^c)^{-1}\{1\}}(x) = 1 \}
= \{x : x \in (u^c)^{-1}\{1\} \}
= \{x : u^c(x) = 1 \}
= \{x : u(x) = 0 \}
= \{x : x \notin V^c \}
= \{x : x \in V \}
= V.$$

Put $W = v^{-1}(0, 1]$ and $W^* = w^{-1}(0, 1]$, then $x \in W$, $W^* \supseteq V$ and $W \cap W^* = \phi$. Hence it is clear that $(X, I_0(t^*))$ is Regular.

Example 2.9: Let $X = \{x, y\}$, $u, v \in I^X$, where u, v are defined by u(x) = 0.8, u(y) = 0, v(x) = 0 and v(y) = 1, consider the supra fuzzy topological space t^* on X generated by $\{u, v\} \cup \{\text{ constants}\}$. For w = I - u, we see that (X, t^*) is not 0-SFT(i). Now $I_0(t^*) = \{X, \phi, \{x\}, \{y\}\}$, here it is clear that $I_0(t^*)$ is a supra fuzzy topology on X and hence $(X, I_0(t^*))$ is a supra regular space.

Theorem 2.10: Let (X, t^*) be a supra fuzzy topological space $A \subseteq X$, and $t^*_A = \{ u/A : u \in t^* \}$, then $1_{((u/A)^c)^{-1}\{1\}}(x) = (1_{(u^c)^{-1}\{1\}}/A)(x)$.

Proof. Let w be a closed supra fuzzy set in t_A^* , i.e., $w \in t_A^{*c}$, then $u/A = w^c$, where $u \in t^*$. Now, we have

$$\begin{aligned} \mathbf{1}_{((u/A)^c)^{-1}\{1\}}(x) &= \begin{cases} 0 & \text{if } x \notin ((u/A)^c)^{-1}\{1\} \\ 1 & \text{if } x \in ((u/A)^c)^{-1}\{1\} \end{cases} \\ &= \begin{cases} 0 & \text{if } x \notin \{y : (u/A)^c(y) = 1\} \\ 1 & \text{if } x \in \{y : (u/A)^c(y) = 1\} \end{cases} \\ &= \begin{cases} 0 & \text{if } (u/A)^c(x) < 1 \\ 1 & \text{if } (u/A)^c(x) = 1 \end{cases} \\ &= \begin{cases} 0 & \text{if } w(x) < 1 \\ 1 & \text{if } w(x) = 1 \end{cases} \end{aligned}$$

Again,
$$1_{(u^c)^{-1}\{1\}}(x) = \begin{cases} 0 & \text{if} & x \notin (u^c)^{-1}\{1\} \\ 1 & \text{if} & x \in (u^c)^{-1}\{1\} \end{cases}$$

$$= \begin{cases} 0 & \text{if} & x \notin \{y : u^c(y) = 1\} \\ 1 & \text{if} & x \in \{y : u^c(y) = 1\} \end{cases}$$

$$= \begin{cases} 0 & \text{if} & u^c(x) < 1 \\ 1 & \text{if} & u^c(x) = 1 \end{cases}$$
Now,
$$(1_{(u^c)^{-1}\{1\}}/A)(x) = \begin{cases} 0 & \text{if} & (u^c/A)(x) < 1 \\ 1 & \text{if} & (u^c/A)(x) = 1 \end{cases}$$

$$= \begin{cases} 0 & \text{if} & (u/A)^c(x) < 1 \\ 1 & \text{if} & (u/A)^c(x) = 1 \end{cases}$$

$$= \begin{cases} 0 & if & w(x) < 1 \\ 1 & if & w(x) = 1 \end{cases}$$

Therefore, we have $1_{((u_A')^c)^{-1}\{1\}}(x) = (1_{(u^c)^{-1}\{1\}}/A)(x)$.

Theorem 2.11: Let (X, t^*) be a supra fuzzy topological space and $A \subseteq X$ and $t^*_A = \{ u / A : u \in t^* \}$, then

- (a) (X, t^*) is α -SFR (i) implies (A, t_A^*) is α SFR (i).
- (b) (X, t^*) is α -SFR (ii) implies (A, t_A^*) is α SFR (ii).
- (c) (X, t^*) is α -SFR (iii) implies (A, t^*_A) is α SFR (iii).
- (d) (X, t^*) is α -SFR(iv) implies (A, t_A^*) is α SFR(iv).

Proof. Let (X, t^*) be α -SFR(i). We have to prove that (A, t^*_A) is α -SFR(i). Let w be a closed fuzzy set in t^*_A , and $x^* \in A$ such that $w(x^*) < 1$. This implies that $w^c \in t^*_A$ and $w^c(x^*) > 0$. So there exists a $u \in t^*$ such that $u/A = w^c$ and clearly u^c is closed in t^* and $u^c(x^*) = (u/A)^c(x^*) = w(x^*) < 1$, i.e., $u^c(x^*) < 1$. Since (X, t^*) is α -SFR (i), for $\alpha \in I_1$, there exist $v, v^* \in t^*$ such that $v(x^*) = 1, v^* \ge 1_{(u^c)^{-1}\{1\}}$ and $v \cap v^* \le \alpha$. Since $v, v^* \in t^*$, then v/A, $v^*/A \in t^*_A$ and $v/A(x^*) = 1, v^*/A \ge (1_{(u^c)^{-1}\{1\}}/A)$ and $v/A \cap v^*/A = (v \cap v^*)/A \le \alpha$.

But $1_{(u^c)^{-1}\{1\}}/A = 1_{((u/A)^c)^{-1}\{1\}} = 1_{w^{-1}\{1\}}$, then $v^*/A \ge 1_{w^{-1}\{1\}}$. Hence it is clear that (A, t^*_A) is α - SFR (i).

The proofs of (b), (c) and (d) are similar.

Theorem 2.12: Let (X, T) be a topological space and T^* be associated supra topology with T. Consider the following statements:

- 1) (X, T^*) is a Regular space.
- 2) $(X, \omega(T^*))$ is α -SFR (i).
- 3) $(X, \omega(T^*))$ is α -SFR (ii).
- 4) $(X, \omega(T^*))$ is α -SFR (iii).
- 5) $(X, \omega(T^*))$ is α -SFR (iv).

Then the following statements are true:

- (a) (1) implies (2) implies (3) implies (5) implies (1),
- (b) (1) implies (2) implies (4) implies (5) implies (1).

Proof. First, suppose that (X, T^*) be regular space. We shall prove that $(X, \omega(T^*))$ is α -SFR (i). Let w be a closed supra fuzzy set in ω (T^*) and $x \in X$ such that w(x) < 1, then $w^{c} \in \omega(T^{*})$ and $w^{c}(x) > 0$. Now we have $(w^{c})^{-1}(0,1] \in T^{*}$, $x \in (w^{c})^{-1}(0,1]$. Also it is clear that $[(w^c)^{-1}(0,1)]^c = w^{-1}\{1\}$ be a closed in T^* and $x \notin w^{-1}\{1\}$. Since (X, T^*) is Regular, then there exist $V, V^* \in T$ such that $x \in V, V^* \supseteq w^{-1}\{1\}$ and $V \cap V^* = \phi$. But by the definition of lower semi continuous functions $I_V, I_{V*} \in \omega(T^*)$ and $I_V(x) = 1$, $1_{V^*} \supseteq 1_{w^{-1}(1)}, \ 1_V \cap 1_{V^*} = 1_{V \cap V^*} = 0.$ Put $u = 1_V$ and $v = 1_{V^*}$, then, we have u(x) = 1, $v \supseteq 1_{w^{-1}(1)}$ and $u \cap v \le \alpha$. Hence $(X, \omega(T^*))$ is α - SFR (i).

We can easily show that (2) implies (3), (3) implies (5), (2) implies (4), (4) implies (5). We therefore prove that (5) implies (1).

Let $(X, \omega(T^*))$ be α - SFR (iv). Let $x \in X$ and V be a closed set in T^* , such that $x \notin V$. This implies that $V^c \in T^*$ and $x \in V^c$. But from the definition of $\omega(T^*)$, $1_{U^c} \in \omega(T^*)$, and $(1_{V^c})^c = I_V$ closed in $\omega(T^*)$ and $I_V(x) = 0$. Since $(X, \omega(T^*))$ is α - SFR (iv), for $\alpha \in I_1$, there exist $u, v \in \omega(T^*)$ such that $u(x) > \alpha$, $v \ge 1_{(1_v)^{-1}\{1\}} = I_V$ and $u \cap v \le \alpha$. Since $u, v \in \omega(T^*)$, then $u^{-1}(\alpha, 1], v^{-1}(\alpha, 1] \in T^*$ and $x \in u^{-1}(\alpha, 1]$. Since $v \ge I_V$, then $v^{-1}(\alpha, 1] \supseteq (I_V)^{-1}(\alpha, 1] = V$, and $u \cap v \le \alpha$ implies $(u \cap v)^{-1}(\alpha, 1] = u^{-1}(\alpha, 1] \cap v^{-1}(\alpha, 1)$ 1] = ϕ . Then by definition, (X, T^*) is Regular space.

Thus it is seen that α - SFR (p) is a good extension of its topological counter part (p = i, ii, iii, iv).

Theorem 2.13: Let (X, t^*) and (Y, s^*) be two supra fuzzy topological spaces and $f: X \to Y$ be continuous, one-one, onto and open map, then

- (a) (X, t^*) is α SFR (i) implies (Y, s^*) is α SFR (i).
- (b) (X, t^*) is α SFR (ii) implies (Y, s^*) is α SFR (ii).
- (c) (X, t^*) is α SFR (iii) implies (Y, s^*) is α SFR (iii).
- (d) (X, t^*) is α SFR (iv) implies (Y, s^*) is α SFR (iv).

Proof. Suppose (X, t^*) be α - SFR (i). For $w \in (s^*)^c$ and $p \in Y$ such that $w(p) < 1, f^{-1}(w)$ $\in (t^*)^c$ as f is continuous and $x \in X$ such that f(x) = p as f is one-one and onto. Hence $f^{-1}(w)(x) = w(f(x)) = w(p) < 1$. Since (X, t^*) is α - SFR (i), for $\alpha \in I_1$, then there exist $u, v \in t^*$ such that $u(x) = 1, v(y) = 1, y \in \{f^{-1}(w)\}^{-1}\{1\}$ and $u \cap v \leq \alpha$. This implies that $f(u)(p) = \{ \text{Sup } u(x) : f(x) = p \} = 1,$

and $f(v) f(y) = \{ \text{Sup } v(y) \} = 1 \text{ as } f(f^{-1}(w)) \subseteq w \implies f(y) \in w^{-1} \{1\}$ and $f(u \cap v) \le \alpha$ as $u \cap v \le \alpha \implies f(u) \cap f(v) \le \alpha$.

Now, it is clear that for every f(u), $f(v) \in s^*$ such that f(u)(x) = 1, f(v)(f(v)) = 1, f(v) $\in w^{-1}\{1\}$ and $f(u) \cap f(v) \leq \alpha$. Hence (Y, s^*) is α - SFR (i).

Similarly (b), (c) and (d) can be proved.

Remark: Every homeomorphic image of α -regular space is also α -regular

Theorem 2.14: Let (X, t^*) and (Y, s^*) be two supra fuzzy topological spaces and $f: X \to Y$ be a continuous, one-one, onto and closed map then,

- (a) (Y, s^*) is α SFR (i) implies (X, t^*) is α SFR (i).
- (b) (Y, s^*) is α SFR (ii) implies (X, t^*) is α SFR (ii).
- (c) (Y, s^*) is α SFR (iii) implies (X, t^*) is α SFR (iii).
- (d) (Y, s^*) is α SFR (iv) implies (X, t^*) is α SFR (iv).

Proof. Suppose (Y, s^*) be α - SFR (i). For $w \in (t^*)^c$ and $x \in X$ with w(x) < 1, then $f(w) \in (s^*)^c$ as f is closed and we find $p \in Y$ such that f(x) = p as f is one-one. Now we have $f(w)(p) = \{\text{Sup } w(x) : f(x) = p\} < 1$. Since (Y, s^*) is α - SFR (i), for $\alpha \in I_1$, then there exist $u, v \in s^*$ such that u(f(x)) = 1, v(y) = 1, v(y) = 1, v(y) = 1, and v(y) = 1 and v(y) = 1. This implies that v(y) = 1 and v(y) = 1 as v(y) = 1 and v(y) = 1 and v(y) = 1 and v(y) = 1 as v(y) = 1 as v(y) = 1 as v(y) = 1 and v(y) =

Similarly, (b), (c) and (d) can be proved.

Remark: Every inverse homeomorphic image of α -regular space is also α -regular.

Now we recall the following diagrams from refs. [11], [12] and [13], respectively:

(a)
$$(X, t) \text{ is } \alpha - T_0 \text{ (i)}$$

$$(X, t) \text{ is } \alpha - T_0 \text{ (ii)} \Rightarrow (X, t) \text{ is } T_0 \text{ (iv)}.$$

$$(X, t) \text{ is } \alpha - T_0 \text{ (ii)} \Rightarrow (X, t) \text{ is } T_0 \text{ (iv)}.$$

$$(X, t^*) \text{ is } \alpha - T_1 \text{ (ii)} \Rightarrow (X, t^*) \text{ is } \alpha - T_1 \text{ (iii)} \Rightarrow (X, t^*) \text{ is } T_1 \text{ (iv)}.$$

$$(X, t^*) \text{ is } \alpha - T_1 \text{ (ii)} \Rightarrow (X, t^*) \text{ is } \alpha - T_2 \text{ (iii)}.$$

$$(X, t) \text{ is } \alpha - T_2 \text{ (ii)}$$

$$(X, t) \text{ is } \alpha - T_2 \text{ (iii)}.$$

Theorem 2.15: The following are true:

(i)
$$(X, t^*)$$
 is an α - SFR (iv) + α - $T_0(i) \Rightarrow \alpha$ - $T_2(i) \Rightarrow \alpha$ - $T_1(i)$.

(ii)
$$(X, t^*)$$
 is an α - SFR (iv) + α - T_0 (ii) $\Rightarrow \alpha$ - T_2 (ii) $\Rightarrow \alpha$ - T_1 (ii).

Proof: The proof is easy.

However the arrows are in (i) and (ii) are not reversible

The following examples will serve the purpose.

Example 2.16: Let $X = \{x, y\}$ and u, v be fuzzy sets in X, where u(x)=1, u(y)=0.5, v(x)=0.6, v(y)=1. Consider the fuzzy supra topology t^* on X generated by $\{u, v\} \cup \{\text{Constants}\}$. For w=1-u, it is clear that (X, t^*) is α - $T_2(i)$ but it is not \square - SFR (iv).

Similarly the non reverse civility of (ii) can be shown.

The proof is now complete.

References

- L.A.Zadeh, Fuzzy sets. Information and control 8, 338 (1965). http://dx.doi.org/10.1016/S0019-9958(65)90241-X
- C. L. Chang, J. Math. Anal Appl. 24, 182 (1968). http://dx.doi.org/10.1016/0022-247X(68)90057-7
- R. Lowen, J. Math. Anal. Appl. 56, 621 (1976). http://dx.doi.org/10.1016/0022-247X(76)90029-9
- A. S. Mashhour, A. A. Allam, F. S. Mahmoud, and F. H. Khedr, Indian J. Pure and Appl. Math. 14 (4), 502 (1983).
- 5. M. E. Abd EL-Monsef, and A. E. Ramadan, Indian J. Pure and Appl. Math. 18 (4), 322 (1987).
- D. M. Ali, Fuzzy Sets and Systems 35, 101 (1990). http://dx.doi.org/10.1016/0165-0114(90)90022-X
- 7. D. M. Ali, The Journal of Fuzzy Mathematics (Los Angeles) 1 (2), 311 (1993).
- K. K. Azad, J. Math. Anal. Appl. 82 (1), 14 (1981). http://dx.doi.org/10.1016/0022-247X(81)90222-5
- P. P. Ming and M. L. Ying. J. Math. Anal. Appl. 77, 20 (1980). http://dx.doi.org/10.1016/0022-247X(80)90258-9
- C. K. Wong, J. Math. Anal. Appl. 45, 512 (1974). http://dx.doi.org/10.1016/0022-247X(74)90090-0
- 11. M. S. Hossain and D. M. Ali, J. Math. and Math. Sc. 24, 95 (2009).
- 12. M. F. Hoque, M. S. Hossain, and D. M. Ali, J. Mech. Cont. Math. Sci. 6 (2), 875 (2012).
- 13. M. S. Hossain and D. M. Ali, J. Bang. Acad. Sci. 29, 201 (2005).