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Abstract

Let M be a prime I'-ring and let | be a nonzero ideal of M. Suppose that D: M — M is a
nonzero generalized derivation with associated derivation d : M — M. Then we prove the
following:

(i) If D acts as a homomorphism on I, then either d =0 on M or M is commutative.
(ii) If M satisfies the assumption (*) (see below), and if D acts as an anti-homomorphism on
I, then either d = 0 on M or M is commutative.
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1. Introduction

In classical ring theory, Bell and Kappe [1] proved that if d is a derivation of a semiprime
ring R which is either an endomorphism or an anti-endomorphism on R, then d = O:
whereas, the behavior of d is somewhat restricted in case of prime rings in the way that if
d is a derivation of a prime ring R acting as a homomorphism or anti-homomorphism on a
nonzero right ideal of R, thend =0 on R.

Afterwards Yenigul and Argac [2] generalized these results with a-derivations and M.
Ashraf, Rehman and Quadri [3] obtained the similar results with (oc,t)-derivations.
Analogously Rehman [4] extended the results for generalized derivation acting on
nonzero ideals in case of prime rings. Recently Ali and Kumar [5] established the above
mentioned result for generalized (6,¢)-derivations in prime rings. By the same motivation,
we extend the results in [4] of classical ring theory to the I'-ring theory in the case of
generalized derivation acts as a homomorphism and an anti-homomorphism of prime
r-rings.
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Definition 1.1 [6]
Let M and I be additive abelian groups. M is called a I'-ring if for all x,y,zeM, o,B I the
following conditions are satisfied:

(i) xpyeM,

(i) (x+y)az=xaz+yaz, x(a+ B)y=xay +XBy, Xaly +z) = Xoy + Xz,

(ifi) (xay)Bz = xayp2).

Definition 1.2
AT-ring M is called prime if for any a,beM, al'MI'b = 0 implies that eithera=0or b =
0.

Definition 1.3
An additive mapping d : M — M is called a derivation if d(xay) = d(X)ay + xad(y) holds
forall x,yeM, aerl.

For a fixed aeM, ael’, the mapping 1° : M — M given by 1%(x) = [x, a], is a
derivation which is said to be inner derivation. An additive function D%, : M — M is
called generalized inner derivation if D", p(x) = aox + xab for some fixed a,beM, ael. It
is straight forward to note that if D%, is a generalized inner derivation, then for any
X,yeM, ael’, D% p(xay) = D% p(X)ay + Xal®,(y) where 1% is an inner derivation. In view of
the above observation, the concept of generalized derivation is introduced as follows:

Definition 1.4
An additive mapping D : M — M is called a generalized derivation associated with a
derivation d if D(xay) = D(X)ay + xad(y) for all x,yeM, oel.

Definition 1.5
The commutator xay — yox will be denoted by [, y],. We know that [xBy, z], = [X, z].Y
+ XAy, ]+ X[B,aly and [x, yBz]o = YBIX, Z]u * [X, Y]uBz + YIB.0]u2.

We take an assumption (*) xBzay = xazfy for all x,y,z €M and o,fI". Using the
assumption the basic commutator identities reduces to [xBy, z], = [X, Z].BY + x4y, Z]. and

[X’ yBZ]a = yB[Xv Z]oc + [X’ y]ocBZ'

Definition 1.6
Let M be a I'-ring. An additive mapping ¢ on M is called a homomorphism if ¢(x, y) =
d(X)ad(y), for every x,yeM and ael.

Definition 1.7

AT-ring M is commutative if xay = yax for all x,yeM and aeT.

It is clear that a I'-ring M is commutative if and only if [x, y], = 0 for every x,yeM and
oel.
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Definition 1.8

Let S be a nonempty subset of M and D be a generalized derivation on M with associated
derivation d. A generalized derivation D of M is said to act as a homomorphism on S if
D(xay) = D(x)ay + xad(y) = D(x)aD(y) for all X,yeS and acT.

Definition 1.9

Let S be a nonempty subset of M and D be a generalized derivation on M with associated
derivation d. A generalized derivation D of M is said to act as an anti-homomorphism on S
if D(xay) = D(X)ay + xad(y) = D(y)aD(x) for all x,yeS and aeT".

2. Results

Lemma 2.1

If d is a nonzero derivation of a prime T'-ring M, then the left and right annihilators of d(x)
=0, xeM. In particular ap[b, x], = 0 or [b, x],8a = 0 implies that I,(x) = 0,

(bez, a,pel’)ora=0.

Proof

In aod(x) = 0 for all xeM, aeT, replace x by xBy. Then we get aoad(XBy) = 0 = aad(x)By +
aoxpd(y) = aaxpd(y), for all x,yeM, a,pel". If d = 0, that is d(y) = 0 for some yeM, then,
by the primeness of M we get a = 0.

Lemma 2.2
Let | be a nonzero right ideal in a prime T-ring M.
(@) If M has a derivation d which is zero on I, then d is zero on M.
(b) If M has homomorphism T which is the identity on I, then T is the identity on M.

Proof
(@) If d(x) = 0, xel, then 0 = d(xar) = d(X)ar + xad(r) = xad(r), for all xel, reM,
ael. By lemma 2.1, d must be zero since | is nonzero.
(b) Let xel and a,beM. Then xaapb = T(xaapb) = T(xaa)BT(b) = xeapT(b). Thus
xaaf(b — T(b)) = 0 and either x = 0 or b — T(b) = 0. But | is nonzero and so
contains an x = 0. This forces T(b) = b for all be M.

Lemma 2.3 If a prime I'-ring M contains a nonzero commutative right ideal I, then M is
commutative.

Proof

If xel, then I,(y) = [x, y], = 0, for all yel, aeT, since | is commutative. By lemma 2.2(a),
I«(y) = 0 on M and x is in the center. Thus [x, r], = O for every xel, reM, acl". Hence I (x)
= 0 for aeM and again by lemma 2.2(a), lo(r) = 0 and a is in the center for all aeM.
Therefore M is commutative.
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Theorem 2.4. Let M be a prime I"-ring and | be a nonzero ideal of M. Suppose D : M —
M is a nonzero generalized derivation with associated derivation d. If D acts as a
homomorphism on | and if d = 0 on I, then M is commutative.

Proof
If D acts as a homomorphism on I, then we have
D(xay) = D(x)ay + xad(y) = D(x)aD(y) for all x,yel, acT. (€))]

For any x,y,zel, we find that

D(xaypz) = D(xay)pz + xaypd(z) = D(x)aD(y)Bz + xaypd(z) for all x,y,z€l, o,pel’ (2)
On the other hand,

D(xayBz) = D(x)aD(ypz) = D(x)aD(y)pz + D(x)aypd(z) for all x,y,zel, a,pel. (3)
On comparing (2) and (3), we get (D(x) — x)aypd(z) = 0 for all x,y,zel, a,pel". Thus,

primeness of M forces that either (D(x) — x) =0 or d(z) = 0. If d(z) = 0 for all zel, then d =
0, a contradiction. On the other hand if D(x) = x for all xel, then

xay = D(xay) = D(X)ay + xad(y) for all x,yel, acl’

and hence we find that xad(y) = 0.

Replace x by xpz in xad(y) = 0,

we get xBzad(y) = 0, for all x,y,zel, a,BeT, 4)
Similarly, replacing x by zfx, we get

zBxad(y) = 0, all x,y,zel, a,BeT, (5)
Subtracting (5) from (4), we get, [x, z]gad(y) = 0, all x,y,z€l, a,pel".

Replacing y by yér, rel, we get for all x,y,z,rel, a,p,8€l,

[x, z]pad(ydr) = [X, z]god(y)dr + [X, Z]goydd(r) = [X, z]gaydd(r) = O,

Since d(r) = 0 on I, we get [x, z]s = O, for all x,zel, Bel" by the primeness of M. By
lemma 2.3, M is commutative.

Theorem 2.5. Let M be a prime I'-ring satisfying the condition (*) and | be a nonzero
ideal of M. Suppose D : M — M is a nonzero generalized derivation with associated
derivation d. If D acts as an anti-homomorphism on | and if d = 0 on I, then M is
commutative.

Proof
If D acts as an anti-homomorphism

D(xay) = D(X)ay + xad(y) = D(y)aD(x) for all x,yel, a.cT. (6)
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Replacing x by xBy in (6) and (*), we get

xayBd(y) = D(y)axpd(y), for all x,yel, o.Bel". (7
Now, replace x by zéx in (7), to get
zdxayBd(y) = D(y)azoxpd(y), for all x,y,zel, o,p,8€l (8)

Left multiplying (7) by z, we obtain
z8xaypd(y) = z3D(y)uxpd(y), for all x,y,zel, a,B,6l’ 9)

Comparing (8) and (9), we find that [D(y), z],axpd(y) = 0, for all x,y,zel, a,pel.
Replacing x by xAr, we get [D(y), z],0xArpd(y) = 0, x,y,zel, reM, a,p,5,Lel’. By the
primeness of M either [D(y), z],8x = 0 or d(y) = 0. By lemma 2.1,either [D(y), z],= 0 or
d(y) = 0 Now, let A = {yel | [D(y), 2], = 0, for all ze1}, B = {yel | d(y) = 0}. Thus A and B
are additive subgroups of | and 1 = A U B. But a group can not be a union of two proper
subgroups and hence | = Aor | =B. If | = B then d(y) = 0 for all yel and hence d = 0, a
contradiction. On the other hand, if | = A, then [D(y), z], = O, for all y,zel, acI". Now,
replace y by yiz to get [y, z],Ad(z) + yA[d(2), z], = O. Again replacing y by x3y we get
[x, z].8yAd(z) = 0 for all x,y,zel, a,8,Lel’. Thus primeness of M implies that for each zel
either [x, z], = 0 or d(z) = 0. If d(z) = 0 for all zel then d = 0. Now, if [x, z], = O for all
x,zel, ael’, then by Lemma 2.3 we get the required result. This completes the proof of the
theorem.
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