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Abstract 
 

Let M be a prime Γ-ring and let I be a nonzero ideal of M. Suppose that D: M → M is a 
nonzero generalized derivation with associated derivation d : M → M. Then we prove the 
following: 
 

(i) If D acts as a homomorphism on I, then either d = 0 on M or M is commutative. 
(ii) If M satisfies the assumption (*) (see below), and if D acts as an anti-homomorphism on 
I, then either d = 0 on M or M is commutative. 
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In classical ring theory, Bell and Kappe [1] proved that if d is a derivation of a semiprime 
ring R which is either an endomorphism or an anti-endomorphism on R, then d = 0: 
whereas, the behavior of d is somewhat restricted in case of prime rings in the way that if 
d  is a derivation of a prime ring R acting as a homomorphism or anti-homomorphism on a 
nonzero right ideal of R, then d = 0 on R. 

Afterwards Yenigul and Argac [2] generalized these results with α-derivations and M. 
Ashraf, Rehman and Quadri [3] obtained the similar results with (σ,τ)-derivations. 
Analogously Rehman [4] extended the results for generalized derivation acting on 
nonzero ideals in case of prime rings. Recently Ali and Kumar [5] established the above 
mentioned result for generalized (θ,ϕ)-derivations in prime rings. By the same motivation, 
we extend the results in [4] of classical ring theory to the Γ-ring theory in the case of 
generalized derivation acts as a homomorphism and an anti-homomorphism of prime      
Γ-rings. 
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Definition 1.1 [6] 
Let M and Γ be additive abelian groups. M is called a Γ-ring if for all x,y,z∈M, α,β∈Γ the 
following conditions are satisfied:  

(i) xβy∈M,  
(ii) (x + y)αz = xαz + yαz,  x(α + β)y = xαy + xβy,  xα(y + z) = xαy + xαz,  
(iii) (xαy)βz = xα(yβz). 

 
Definition 1.2 
A Γ-ring M is called prime if for any a,b∈M, aΓMΓb = 0 implies that either a = 0 or b = 
0.  
 
Definition 1.3 
An additive mapping d : M → M is called a derivation if d(xαy) = d(x)αy + xαd(y) holds 
for all x,y∈M, α∈Γ.  

For a fixed a∈M, α∈Γ, the mapping Iα
a : M → M given by Iα

a(x) = [x, a]α is a 
derivation which is said to be inner derivation. An additive function Dα

a,b : M → M is 
called generalized inner derivation if Dα

a,b(x) = aαx + xαb for some fixed a,b∈M, α∈Γ. It 
is straight forward to note that if Dα

a,b is a generalized inner derivation, then for any 
x,y∈M, α∈Γ, Dα

a,b(xαy) = Dα
a,b(x)αy + xαIα

b(y) where Iα
b is an inner derivation. In view of 

the above observation, the concept of generalized derivation is introduced as follows: 
 
Definition 1.4 
An additive mapping D : M → M is called a generalized derivation associated with a 
derivation d if D(xαy) = D(x)αy + xαd(y) for all x,y∈M, α∈Γ. 
 
Definition 1.5 
The commutator xαy − yαx will be denoted by [x, y]α. We know that [xβy, z]α = [x, z]αβy 
+ xβ[y, z]α + x[β,α]zy and [x, yβz]α = yβ[x, z]α + [x, y]αβz + y[β,α]xz.  

We take an assumption (*) xβzαy = xαzβy for all x,y,z ∈M and α,β∈Γ. Using the 
assumption the basic commutator identities reduces to [xβy, z]α = [x, z]αβy + xβ[y, z]α and 
[x, yβz]α = yβ[x, z]α + [x, y]αβz.  
 
Definition 1.6 
Let M be a Γ-ring. An additive mapping φ on M is called a homomorphism if φ(x, y) = 
φ(x)αφ(y), for every x,y∈M and α∈Γ. 
 
 Definition 1.7 
A Γ-ring M is commutative if xαy = yαx for all x,y∈M and α∈Γ. 
It is clear that a Γ-ring M is commutative if and only if [x, y]α = 0 for every x,y∈M and 
α∈Γ. 
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Definition 1.8 
Let S be a nonempty subset of M and D be a generalized derivation on M with associated 
derivation d. A generalized derivation D of M is said to act as a homomorphism on S if 
D(xαy) = D(x)αy + xαd(y) = D(x)αD(y) for all x,y∈S and α∈Γ. 
 
Definition 1.9 
Let S be a nonempty subset of M and D be a generalized derivation on M with associated 
derivation d. A generalized derivation D of M is said to act as an anti-homomorphism on S 
if D(xαy) = D(x)αy + xαd(y) = D(y)αD(x) for all x,y∈S and α∈Γ. 
 
2. Results 
 
Lemma 2.1 
If d is a nonzero derivation of a prime Γ-ring M, then the left and right annihilators of d(x) 
= 0, x∈M. In particular aβ[b, x]α = 0 or [b, x]αβa = 0 implies that Ib(x) = 0,  
(b∈Z, α,β∈Γ) or a = 0. 
 
Proof 
In aαd(x) = 0 for all x∈M, α∈Γ, replace x by xβy. Then we get aαd(xβy) = 0 = aαd(x)βy + 
aαxβd(y) = aαxβd(y), for all x,y∈M, α,β∈Γ. If d ≠ 0, that is d(y) ≠ 0 for some y∈M, then, 
by the primeness of M we get a = 0. 
 
Lemma 2.2 
Let I be a nonzero right ideal in a prime Γ-ring M.  

(a) If M has a derivation d which is zero on I, then d is zero on M. 
(b) If M has homomorphism T which is the identity on I, then T is the identity on M. 

 
Proof  

(a) If d(x) = 0, x∈I, then 0 = d(xαr) = d(x)αr + xαd(r) = xαd(r), for all x∈I, r∈M, 
α∈Γ. By lemma 2.1, d must be zero since I is nonzero. 

(b) Let x∈I and a,b∈M. Then xαaβb = T(xαaβb) = T(xαa)βT(b) = xαaβT(b). Thus 
xαaβ(b − T(b)) = 0 and either x = 0 or b − T(b) = 0. But I is nonzero and so 
contains an x ≠ 0. This forces T(b) = b for all b∈M. 

 
Lemma 2.3 If a prime Γ-ring M contains a nonzero commutative right ideal I, then M is 
commutative. 
 
Proof  
If x∈I, then Ix(y) = [x, y]α = 0, for all y∈I, α∈Γ, since I is commutative. By lemma 2.2(a), 
Ix(y) = 0 on M and x is in the center. Thus [x, r]α = 0 for every x∈I, r∈M, α∈Γ. Hence Ia(x) 
= 0 for a∈M and again by lemma 2.2(a), Ia(r) = 0 and a is in the center for all a∈M. 
Therefore M is commutative. 
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Theorem 2.4. Let M be a prime Γ-ring and I be a nonzero ideal of M. Suppose D : M → 
M is a nonzero generalized derivation with associated derivation d. If D acts as a 
homomorphism on I and if d ≠ 0 on I, then M is commutative. 
 
Proof  
If D acts as a homomorphism on I, then we have 

D(xαy) = D(x)αy + xαd(y) = D(x)αD(y) for all x,y∈I, α∈Γ.                                         (1) 

For any x,y,z∈I, we find that 

D(xαyβz) = D(xαy)βz + xαyβd(z) = D(x)αD(y)βz + xαyβd(z) for all x,y,z∈I, α,β∈Γ    (2) 

On the other hand, 

D(xαyβz) = D(x)αD(yβz) = D(x)αD(y)βz + D(x)αyβd(z) for all x,y,z∈I, α,β∈Γ.          (3) 
 
On comparing (2) and (3), we get (D(x) − x)αyβd(z) = 0 for all x,y,z∈I, α,β∈Γ. Thus, 

primeness of M forces that either (D(x) − x) = 0 or d(z) = 0. If d(z) = 0 for all z∈I, then d = 
0, a contradiction. On the other hand if D(x) = x for all x∈I, then  

xαy = D(xαy) = D(x)αy + xαd(y) for all x,y∈I, α∈Γ  

and hence we find that xαd(y) = 0. 

Replace x by xβz in xαd(y) = 0,  

we get xβzαd(y) = 0, for all x,y,z∈I, α,β∈Γ,                                                                 (4) 

Similarly, replacing x by zβx, we get  

zβxαd(y) = 0, all x,y,z∈I, α,β∈Γ,                                                                                  (5) 

Subtracting (5) from (4), we get, [x, z]βαd(y) = 0, all x,y,z∈I, α,β∈Γ. 

Replacing  y by yδr, r∈I, we get for all x,y,z,r∈I, α,β,δ∈Γ, 
  
[x, z]βαd(yδr) =  [x, z]βαd(y)δr + [x, z]βαyδd(r) = [x, z]βαyδd(r) = 0,  
 

Since d(r) ≠ 0 on I, we get [x, z]β = 0, for all x,z∈I, β∈Γ by the primeness of M. By 
lemma 2.3, M is commutative. 
 
Theorem 2.5. Let M be a prime Γ-ring satisfying the condition (*) and I be a nonzero 
ideal of M. Suppose D : M → M is a nonzero generalized derivation with associated 
derivation d. If D acts as an anti-homomorphism on I and if d ≠ 0 on I, then M is 
commutative. 
 
Proof 
 If D acts as an anti-homomorphism 

 

D(xαy) = D(x)αy + xαd(y) = D(y)αD(x) for all x,y∈I, α∈Γ.                                         (6) 
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Replacing x by xβy in (6) and (*), we get 
 

xαyβd(y) = D(y)αxβd(y), for all x,y∈I, α,β∈Γ.                                                             (7) 
 

Now, replace x by zδx in (7), to get 
  

zδxαyβd(y) = D(y)αzδxβd(y), for all x,y,z∈I, α,β,δ∈Γ                                                  (8) 
 

Left multiplying (7) by z, we obtain 
      

zδxαyβd(y) = zδD(y)αxβd(y), for all x,y,z∈I, α,β,δ∈Γ                                                  (9) 
 

Comparing (8) and (9), we find that [D(y), z]ααxβd(y) = 0, for all x,y,z∈I, α,β∈Γ. 
Replacing x by xλr, we get [D(y), z]αδxλrβd(y) = 0, x,y,z∈I, r∈M, α,β,δ,λ∈Γ. By the 
primeness of M either [D(y), z]αδx = 0 or d(y) = 0. By lemma 2.1,either [D(y), z]α = 0 or 
d(y) = 0 Now, let A = {y∈I [D(y), z]α = 0, for all z∈I}, B = {y∈I d(y) = 0}. Thus A and B 
are additive subgroups of I and I = A ∪ B. But a group can not be a union of two proper 
subgroups and hence I = A or I = B. If I = B then d(y) = 0 for all y∈I and hence d = 0, a 
contradiction. On the other hand, if I = A, then [D(y), z]α = 0, for all y,z∈I, α∈Γ. Now, 
replace y by yλz to get [y, z]αλd(z) + yλ[d(z), z]α = 0. Again replacing y by xδy we get     
[x, z]αδyλd(z) = 0 for all x,y,z∈I, α,δ,λ∈Γ. Thus primeness of M implies that for each z∈I 
either [x, z]α = 0 or d(z) = 0. If d(z) = 0 for all z∈I then d = 0. Now, if [x, z]α = 0 for all 
x,z∈I, α∈Γ, then by Lemma 2.3 we get the required result. This completes the proof of the 
theorem. 
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