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Abstract 

Let  be a graph. A set VD ⊆  of a graph ),(= EVG  is called a total dominating set 
if the induced subgraph 〉〈D  has no isolated vertices. The total domination number )(Gtγ  of G 
is the minimum cardinality of a total dominating set of G. A total dominating set D is said to be a 
complete cototal dominating set if the induced subgraph 〉−〈 DV  has no isolated vertices. The 
complete cototal domination number )(Gccγ  of G is the minimum cardinality of a complete 
cototal dominating set of G. In this paper, we initiate the study of complete cototal domination in 
graphs and present bounds and some exact values for )(Gccγ . Also its relationship with other 
domination parameters are established and related two open problems are explored.  
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1.  Introduction    
 
The graphs considered here are simple and without isolated vertices. Let ),(= EVG  be a 
graph with pV |=|  and qE |=| . A vertex v  of a graph ),(= EVG  is said to be a pendant 
vertex if 1=)(vdeg , while a vertex which is adjacent to a pendant vertex is called the 
support vertex. The set of pendant vertices of a graph G  will be denoted )(GP , while the 
set of all support vertices of G  will be denoted by )(GS . We denote 〉〈D  to denote the 
subgraph induced by the set of vertices D  and )(uN  and ][vN  denote the open and closed 
neighborhoods of a vertex v , respectively. Let )(vdeg  be the degree of a vertex v  and as 
usual )(Gδ  the minimum degree and )(G∆  maximum degree. In general, we follow the 
notation and terminology of Harary [1]. 

Each vertex of a graph is said to dominate every vertex in its closed neighborhood. A set 
VD ⊆  is a dominating set if each vertex in V  is dominated by some vertex in D . The 

domination number )(Gγ  of G  is the minimum cardinality of a dominating set. Many 
domination parameters have been defined. For comprehensive work on the subject [2]. A 
dominating set VD ⊆  of a graph ),(= EVG  is called a connected dominating set if the 
induced subgraph 〉〈D  is connected. The connected domination number )(Gcγ  of G  is the 
minimum cardinality of a connected dominating set of G  [3]. 
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A set VD ⊆  of a graph ),(= EVG  is called a total dominating set if the induced 
subgraph 〉〈D  has no isolated vertices. The total domination number )(Gtγ  of G  is the 
minimum cardinality of a total dominating set of G [4].  

A dominating set D  is said to be a cototal dominating set if the induced subgraph 
〉−〈 DV  has no isolated vertices. The cototal domination number )(Gclγ  of G  is the 

minimum cardinality of a cototal dominating set of G  [5]. Inspired from the cototal 
domination, we introduce the new parameter in the field of domination theory of graphs as 
follows: 

A total dominating set D  is said to be a complete cototal dominating set if the induced 
subgraph 〉−〈 DV  has no isolated vertices. The complete cototal domination number 

)(Gccγ  of G  is the minimum cardinality of a complete cototal dominating set of G . 
For example, consider a graph G  in Fig. 1. The set {1,2,3}  is a dominating set as well 

as cototal dominating set, and set {4,5,6}  is a total dominating set. However, any complete 
cototal dominating set must include each pendant vertex {1,2,3}  and its neighbor {4,5,6} . 

Thus pVGcc |==|,6}{1,2,3,4,5=)(γ .  
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Fig. 1. 

 
Applications  
 

Many applications of domination in graphs can be extended to complete cototal domination. 
For example, if we think of each vertex in a dominating set as file server for a computer 
network, then each computer in the network has direct access to a file server. It is sometimes 
reasonable to assume that this access be available even when one of the file servers goes 
down. A complete cototal dominating set provides the desired fault tolerance for such cases 
because each computer has access to at least two file servers and each file server has direct 
access to one backup server and each backup file server has direct access to at least one 
backup file server.  
 
2.  Results 
 
Obviously, a graph with an isolated vertex cannot have a complete cototal dominating set. 
We ask the natural question regarding the existence of complete cototal dominating sets.  
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Theorem 2.1 Every graph with no isolated vertices has a complete cototal dominating set 
and hence a complete cototal domination number.  
 

Proof.  Without loss of generality, let ),(= EVG  be connected. Then V  itself is a complete 
cototal dominating set as each vertex is considered to dominate itself, and since G  has no 
isolates, G  is nontrivial so each vertex v  is adjacent to some other vertex u . Thus both u  
and v  dominate v  and if ][ VGV −  has no isolated vertices. Now that we know G  has a 
complete cototal dominating set, we may remove one vertex at a time from V  if and only if 
the remaining subset of V  is still a complete cototal dominating set. This will give a 
minimal complete cototal dominating set. Among all the complete cototal dominating sets, 
each of the smallest sets has cardinality )(Gccγ . 

Henceforth we consider only graphs with no isolated vertices. 
 
First we calculate complete cototal domination in specific families of graphs.   

 
Theorem 2.2  

  )(i   For any path pP , 
−

−
4

2
2=)(

p
ppPccγ   

)(ii   For any cycle pC , −
4

2=)(
p

ppCccγ   

)(iii  For any star 11, −pK , ppKcc =)11,( −γ   

)(iv  For any wheel pW , 2=)( pWccγ  

 )(v  For any complete graph pK , 




otherwise2
2,3=p if

=)(
p

pKccγ   

 Next, we state straightforward upper and lower bounds for )(Gccγ .  
 
Theorem 2.3 Let G  be a graph with no isolated vertices. Then pGcc ≤≤ )(2 γ , and these 
bounds are sharp. Further, equality of an upper bound holds if and only if every edge of G  
is incident to a support vertex or 3= CG .  
 
Proof.   Clearly from the definition of )(Gccγ  and by Theorem 2.2, the result follows. 
Now for the equality of the upper bound, if 2=p  or 3  then the result is obvious. Let us 
assume that 4≥p . Let D  be the complete cototal dominating set of G . Then clearly D  
contains all the pendant vertices and support vertices of a graph G . Also no two vertices of 

DV −  are adjacent, which implies that pD |=|  is a minimum complete cototal dominating 
set of G . 

Suppose every edge of G  is not incident to a support vertex or 3CG ≠ , then there 

exists an edge uv  where neither u  nor v  is a support vertex and 2)( ≥udeg  and 
2)( ≥vdeg . Let },{= vuVD − . Obviously D  is a dominating set and 〉−〈 DV  is 
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connected. If 〉〈D  contains no isolated vertices, then D  is a complete cototal dominating 
set of G  of cardinality 2−p , a contradiction. 

Next we present the lower bound for )(Gccγ  in terms of maximum degree.  

Theorem 2.4 Let TG =  be any nontrivial tree. Then )()(1 GccG γ≤∆+ . Further equality 

holds if and only if 11,= −pKG .  

 
Proof.   Let TG =  be any nontrivial tree and let D  be a complete cototal dominating set of 
T . Clearly D  contains all the pendant vertices and support vertices of a tree. Therefore 

)(1)( TTcc ∆+≥γ .  

For equality, if 11,= −pKT  then by result )(iii  of Theorem 2.2, the result follows. 

Conversely, let T  be a tree with )(1=)( TTcc ∆+γ . Let D  be a complete cototal 
dominating set with size )(1|=| TD ∆+  and let v  be a maximum degree vertex in T . If 

Dv ∉ , then )(2|| TD ∆≥  which is impossible, so Dv ∈ . Now it follows from 
)(1|=| TD ∆+  that TvN ⊆)(  and any vertex of )(vN  is a pendant vertex. Hence 

11,= −pKD . 

 
 Next theorem gives the upper bound for )(Gccγ  in terms of order and size.  
 
Theorem 2.5 Let ),(= qpG  be any nontrivial connected graph. Then 

22)( +−≤ pqGccγ . Further, equality holds if and only if TG =  is tree and every edge 
of a tree is incident with a support vertex.   
 
Proof.   Obviously, 21)2(=)( +−−≤ pppGccγ  and since G  is connected, 1−≥ pq . 

Thus 22)( +−≤ pqGccγ  if and only if every edge of a tree is incident with a support 

vertex, then 1= −pq  and 22==)( +− pqpGccγ .  

Conversely, let 22=)( +− pqGccγ . Then ppq ≤+− 22 , which implies that 1−≤ pq , 

so G  is a tree with pGcc =)(γ  and by Theorem 2.3, the result follows. 

 Next, we give the upper bound for )(Gccγ  in terms of order and minimum degree. 
 
Theorem 2.6  Let G  be any connected graph of order at least four and 1)(2 −≤≤ pGδ . 

Then )()( GpGcc δγ −≤ .  
 

Proof.   Let xG =)(δ  be a minimum degree vertex of G . We consider the following cases. 
 
Case 1. There exist a vertex ][xNy ∈  such that ][][ xNyN ≠ . Let }{][= yxNX −  and 

XVD −= . As )(|=| GX δ , each vertex of X  has a neighbor in D , so D  is a 
dominating set. Also 〉〈X  contains no isolated vertices. Suppose u  is an isolated vertex in 

〉〈D . Then obviously yu ≠  and XuN =)( . Hence u  is a neighbor of x . But then 
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)(>)( Gxdeg δ , a contradiction. Thus we conclude that D  is a complete cototal dominating 
set with cardinality )(Gp δ− . Hence )()( GpGcc δγ −≤ . 
Case 2. ][=][ xNyN  for every vertex )(xNy ∈ . Then the connectivity of G  implies that 
G  is complete graph. But then 1=)( −pGδ , a contradiction. 

The next theorem relates )(Gccγ  with maximum number of independent edges )(1 Gβ  
of G .  
 
Theorem 2.7  If G  has 2)( ≥Gδ , then )(12)( GGcc βγ ≤ .  
Proof.   Let G  be a graph with 2)( ≥Gδ  and M  be a maximum independent set of edges 
in G . Let MS ⊆  be the total dominating set of G . Since each SVv −∈  must have at 
least one neighbor in SV − . So S  is a complete cototal dominating set of G . Hence 

)(12)( GGcc βγ ≤ .  

Theorem A[1]  For any graph G  without isolated vertices, 
+∆

≥
1)(

)(
G

p
Gγ . 

Relates the domination number to the maximum degree. We establish a similar result for 
)(Gccγ .  

Theorem 2.8 For any graph G , without isolated vertices, )(
1)(

2
GccG

p
γ≤

+∆
  

Proof.   Let G  have no isolated vertices and let S  be a −ccγ set for G . Let t  denote the 
number of edges in G  having one vertex in S  and the other vertex in SV − . Since 

)()( vdegG ≥∆  for all Sv ∈  and each vertex in S  is adjacent to at least one member of S , 

we have, )(1))((|=|1))(( GccGSGt γ−∆−∆≤ . Also each vertex in SV −  is adjacent to 

at least one vertex of SV − , we have, )](2[|=|2 GccPSVt γ−−≥   

Hence, )()()())(2( GccGccGGssp γγγ −∆≤− . 
This reduces to the bound of the theorem. 

Theorem 2.9 For any tree 11, −≠ pKT  with 6≥p , then ≥
3

2
)(

p
Tccγ . 

 In the next theorem we characterize the tree for which 
3

2
=)(

p
Tccγ . 

We define the following operations on trees which achive the lower bound of the above 
theorem 2.9. 
Operation 1 Attach 3P  to a vertex v , where v  is neither a pendant vertex nor a support 

vertex and )(vN  has a support vertex of degree two in T . 
Operation 2 Attach 1P  to a vertex v , where v  is either a pendant vertex or a support vertex 
of T . 
Operation 3 Attach 2P  to any vertex of T . 

Let, /{=0 TX T  is a tree obtained from P6 by finite type of operations of type 1}   

/{=1 TX is obtained from a tree T’   by applying operation 2 to T’}   

/{=2 TX T is a tree which can be obtained from a tree  by applying operation 3} 
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Let, such that porder  of  treea is/{= TTnτ 3

2
=)(

p
Tccγ }   

Proposition 1   If 0XT ∈  has order 6≥p , then )()(=)( TSTPTD ∪  is a complete 

cototal dominating set of cardinality 
3

2 p . Where D(T) is the union of set of all pendant 

vertices and the support vertices of a tree T. 
 

Proof.   We use induction on k , the number of steps required to construct T . If 0=k , 
then 6PT ≅ , and )(TD  is a complete cototal dominating set of cardinality 4, i.e. 

4=
3

6*2
=

3

2 p . Suppose T  can be constructed from 6P  by a sequence of 1≥k  operations 

of type 1, and suppose that T ′  is a tree which can be obtained from 6P  by 1−k  operations 

of type 1, then let )(TD ′  is a complete cototal dominating set of cardinality 
3

)(2 Tp ′ . As 

0XT ∈ , T  can be obtained from T ′  by applying operation type 1. By induction assumption 

)()(=)( TSTPTD ′∪′′  is a complete cototal dominating set of cardinality 
3

)(2 Tp ′ . Therefore, 

)(=}2,1{)( TDvvTD ∪′  is a complete cototal dominating set of cardinality 
3

)(2 Tp . 

 
Proposition 2   Let τ∈T  and v  is a pendant vertex of T . If }{vD −  is a complete cototal 
dominating set of vT − , then the number of vertices in a tree is not a multiple of 3 and 

τ∈− vT .  
 
Proof.   Suppose v  is a pendant vertex of a tree T , and }{vD −  is a complete cototal 

dominating set of }{vT − . Note that 1
3

2
)(

3

1)2(
−≤−≤

−


p
vTcc

p
γ . 

If the number of vertices in a tree T  is a multiple of three, i.e. kp 3=  for some positive 

integer 1≥k , then we have 1
3

)2(3

3

1)2(3
−≤

−


kk
, and so, 122 −≤ kk , which is 

impossible. Thus 13= +kp  or 23= +kp  for some positive integer 1≥k . 

If 13= +kp , then 1
3

1)2(3
)(

3

)2(3
−

+
≤−≤

k
vTcc

k
γ , which implies that, 

kvTcck 2)(2 ≤−≤ γ  and so τ∈− vT .  

If 23= +kp , then 1
3

2)2(3
)(

3

1)2(3
−

+
≤−≤

+


k
vTcc

k
γ , which implies 

12)(12 +≤−≤+ kvTcck γ  and so τ∈− vT . 
 
Proposition 3   Let τ∈T  and suppose 1v  and 2v  are either both pendant vertices of T  or 

1v  is degree two support vertex of T  adjacent to a pendant vertex 2v . If }2,1{ vvD −  is a 
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complete cototal dominating set of 21 vvT −− , then τ∈−− 21 vvT  and the number of 
vertices in a tree minus two is a multiple of three.  
Proof.   Suppose 1v  and 2v  are either pendant vertices of a tree T  or 1v  is a degree two 

support vertex of T  adjacent to a pendant vertex 2v  and that }2,1{ vvD −  is a complete 

cototal dominating set of 21 vvT −− . Note that 2
3

2
)21(

3

2)2(
−≤−−≤

−


p
vvTcc

p
γ .  

Suppose either kp 3=  or 13= +kp  for some positive integer 1≥k . 

If kp 3= , then 2
3

)2(3

3

2)2(3
−≤

−


kk , and so 2212 −≤− kk , which is 

impossible.  

If 13= +kp , then 2
3

1)2(3

3

1)2(3
−

+
≤

−


kk , and so, 122 −≤ kk , which is 

impossible. 
Thus, 23= +kp . Hence 23= +kp  for some positive integer k , and so 

2
3

2)2(3

3

)2(3
−

+
≤

kk
. 

Hence, kvvTcck 2)21(2 ≤−−≤ γ  and so τ∈−− 21 vvT . 
 Now we are ready to prove the following theorem.  

 

Theorem 2.10 For any tree 11, −≠ pKT  with 6≥p , iXi
2

0== ∪τ .  
 

Proof.   Suppose 0XT ∈ . If 6PT ≅ , then 
3

)(2
=4=)(

Tp
Tccγ . If T  is not 6P  then by 

Proposition 1, 
3

)(2
=)(

Tp
Tccγ  and so τ∈T .  

Suppose 1XT ∈ . Then 13=)(= +kTpp  for some positive integer k , and T  can be 

constructed from 0XT ∈′  by applying operation 2 to T ′ . Let u  be the 1P  attached. By 

Proposition 1, )(TD ′  is a complete cototal dominating set of cardinality k2 . But then 
}{uD ∪  is a complete cototal dominating set of T  of cardinality 12 +k . Therefore, 

12=
3

1)2(3
)( +

+
≥ k

k
Tccγ  and so 

3

2
=)(

p
Tccγ . Hence τ∈T . 

Suppose 2XT ∈ , then 23=)(= +kTpp  for some positive integer k , and T  can be 

constructed from 0XT ∈′  by applying operation 3. Let u  and u′  be the added vertices. By 

Proposition 1, )(TD ′  is a complete cototal dominating set of cardinality k2 . But then 
},{ uuD ′∪  is a complete cototal dominating set of T  of cardinality 22 +k . Therefore 

22=
3

2)2(3
)( +

+
≥ k

k
Tccγ , and so 

3

2
=)(

p
Tccγ . Hence τ∈T . 



554 Complete Cototal Determination 
 

 

We now show that iXi
2

0=∪⊆τ . To prove this we apply induction on the number of 

vertices p  of the tree τ∈T . If 6=p , then 06 XPT ∈≅ . Suppose τ∈T  has order 

1)(= ≥Tpp  and assume that T ′  is a tree with pTp <)(6 ′≤  and τ∈′T . Then 

iXiT 2
0=∪∈′ . Let D  be any complete cototal dominating set. Then each vertex in DV −  

is adjacent to at least one vertex in D . Furthermore, every vertex in D  is either a degree 
two support vertex adjacent to exactly one vertex in DV −  or a pendant vertex adjacent to 
degree two support vertex that is adjacent to exactly one vertex in DV − . Hence the 
number of vertices in a tree is the multiples of three and kp 3=  for some positive integer 

2≥k . Let v  be the end point of the diametrical path ivvvv ,,2,1=   in 〉−〈 DV . As T  

contains no cycles, v  is a pendant vertex of 〉−〈 DV . Thus 2=)(vdeg  and 2|| ≥− DV , 

and so 2v  is adjacent to a degree two support vertex. If 2|=| DV − , then 06 XPT ∈≅ . 

We therefore assume that 3|| ≥− DV . Note that 2v  is neither a pendant vertex nor a 

support vertex of 101= uuvTT −−−′ . Moreover, }1,0{ uuD −  is a complete cototal 

dominating set of T ′  and so 2
3

)2(3
)(

3

3)2(3
−≤′≤

−


k
Tcc

k
γ , which implies that 

22)(22 −≤′≤− kTcck γ  and so τ∈′T . By our induction assumption 0XT ∈′ . Hence 

0XT ∈ . 
 Next, we have the following characterization of those graphs for which the complete 

cototal domination number is equal to the total domination number.  
 
Theorem 2.11 For any graph G , )(=)( GtGcc γγ  if and only if G  has a total dominating 
set D  such that 〉−〈 DV  has no isolated vertices. 
In the next theorem we prove the relation between connected domination number and 
complete cototal domination number.  
 
Theorem 2.12 If 1=)( −∆ pG , then )(1)( GcGcc γγ +≥ .  
 

Proof.  If 1=)( −∆ pG . Then clearly, 1=)(Gcγ . By the definition of complete cototal 

domination and by Theorem 2.3, 2)( ≥Gccγ . Therefore, clearly 1)()( +≥ GcGcc γγ .  
Next theorem gives the relation between cototal domination number and the complete 
cototal domination number.  
 
Theorem 2.13 For any graph G , a cototal dominating set D  is said to be a complete 
cototal dominating set of G  if 〉〈D  has no isolated vertices.  
  
 
Nordhaus-Gaddum type results  
 

Theorem 2.14 Let G  be any nontrivial connected graph. If both G  and G  has no isolated 
vertices, then 
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      )(i  pGccGcc 2)()( ≤+ γγ   

      )(ii  2)()( PGccGcc ≤⋅ γγ   
 
Further, equality holds for   G = P4 or C5.  
Finally we conclude this paper for exploring the following two open problems for  

further research on this topic: Open problem 1 – to characterize the graphs for which 
)(=)( GclGcc γγ ; Open problem 2 - to characterize the graphs for which 

)(1=)( GcGcc γγ + . 
 
3. Conclusion 
 
In this paper, we introduce the new parameter )(Gccγ  of  G, in the field of domination 
theory in graphs. We obtained many bounds for )(Gccγ . We also characterized the extremal 

trees which have 
3

2
=)(

p
Tccγ . Finally we compare ccγ  with )(Gcγ , )(Gtγ  and )(Gclγ ,, 

respectively and concluded with exploring the two open problems related to this parameter. 
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