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Abstract

Let M be a 2-torsion free I'-ring satisfying an assumption and let o,z be centralizing
epimorphisms on M. Let f and g be (o, 7)-derivations on M such that f(x)ax + xag(x) = 0 for
all xeM, aeT. Then we prove that f(u)g[x, yl. = g(u)p[x, yl, = 0 for all x, y, ueM, a,fel’
and f, g map M into its center.
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1. Introduction

Let M and I" be additive abelian groups. M is called a I'-ring if for all x,y,zeM, «,f<T the
following conditions are satisfied:

i) xpyeM,

(i) (x+y)az=xoz+yaz, x(a+ Py =Xy + XpY,
xa(y +2) = Xay + Xoz,

(iii) - (xay)pz = xalypz).

For any x, yeM, the notation [x, y], and (X, y). will denote xay — yax and xay + yax
respectively. We know that [x4Y, z]. = XALY, ], + [X, z].BY + X[B,al.y and [x, yfz]. = yBIX,
Z]o. *+ [X.y]lafz + y[B.alxz, for all x,y,zeM and for all a,f<T". We shall take an assumption
(*) xaypPz = xPyoz for all x,y,zeM, a,f<T". Using this assumption the identities [xpY, z],=
XAy, 2o + [X,2)o By and [X,yfz]. = yBIX,2]o + [X,Y]e B2, for all x,y,zeM and for all o, ST are
used extensively in our results. An additive mapping d from M into itself is called a
derivation if d(xay) = xad(y) + d(X)ay for all x, ye M, acI'. A mapping f from M into itself
is commuting if [f(x), x], = 0, and centralizing if [f(x), x], €Z(M) for all xeM, ael'. We
call a mapping f: M — M central if f(x)eZ(M) for all xeM. Recall that if f is an additive
commuting mapping from M into itself, then a linearization of [f(x), x], = 0 yields [f(x), y].
=[x, f(y)], for all x, yeM, aerl.

* Corresponding author: kkdmath@yahoo.com
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Let o, 7 be mappings of M into itself. An additive mapping d of M into itself is called a
(o, 7)-derivation if d(xay) = o(X)ad(y) + d(X)az(y) for all X, yeM, ael". If z=1, where 1 is
the identity mapping of M, then d is called a o-derivation or a (o, 1)-derivation or a skew-
derivation. Of course, a (1, 1)-derivation or a 1-derivation is a derivation.

In classical ring theories, Chaudhry and Thaheem [1] worked on (o, S)-derivations in
semiprime rings. Quite a few Mathematicians studied (o, f) or (o, 7)-derivations in prime
and semiprime rings and they obtained some fruitful results in these fields.

In this paper we work on semiprime I'-rings with a pair of (o, 7)-derivations. Some
characterizations are obtained relating to (o, 7)-derivations.

2. The Results

First we prove the following lemma.

Lemma 2.1 Let T be an endomorphism of the prime I'-ring M, and let | be a nonzero left
ideal of M. Then

(i) if T(r) = r for all rel, T is the identity map on M,
(ii) if T is one-to-one on I, it is one-to-one on M.

Proof

(i) For arbitrary xeM and rel, xar = T(xar) = T(X)aT(r) = T(X)ar, acl’, hence (X —
T(x))ar = 0. Thus we have (x — T(X))aypr = 0, X,yeM, o,f<l’, and therefore by the
primeness of M we get, x = T(x) for all xeM.

(ii) Observe that ker(T)I'l < ker(T) n |1 = {0}, and since | = {0}, ker(T) = {0}.

Lemma 2.2 Let | = {0} be a left ideal of the semiprime I"-ring M satisfying the condition
(*). If T is an endomorphism of M which is centralizing on I, then T is commuting on I.

Proof
Linearizing the condition that [x, T(x)], €Z for all xel, acI", we obtain

X, TO). + [y, T)]. €Z for all x,yel, ael. 1)

Replacing y by xfx in (1) we then get [x, T(xfx)],+ [xfx, T(X)],
= xBIx, T)]o + [X, TOJoBx + [X, T(X)BT(X)]a

= xBIx, T X, TELaBx + TEOBLX, T + [X, TO)TBT(X)
= xBIx, T(X)]o + xBIX, T()]a + TBIX, T(X)]a + TOBIX, T(X)]a
= 2xf[x, T()]o + 2T(X)L[X, T(X)],, €Z for all xel, a,peT’,

and since the first summand commutes with x, we have
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2[TX)BIX, T(X)]w X]o = 0, from which it follows that

2[T(x), XIuBIX, T + 2TOBIIX, T()]w Xla
= 2[x, T)1uflx, T(X)]. = 0 for all xel, a,p<l. Since the center of a semiprime I'-ring
contains no nonzero nilpotent elements, we conclude that

2[x, T(X)], = 0 for all xel, aeT, 2)
and hence
2([x, TM]o + [y, T(X)]o) =0 for all x,yel, ael'. (3)
Now, we have,
[xBy + ypx, T()]a + [xBx, T(Y)]a
= [oBy, TO)]a + Dvx, T(X)]a + [, T(Y)]a
=xBly, T)]o + [X, TOQLaBY + ¥BIX, T(¥)]a + [y, T()]uBx + xBIX, T(Y)]a+ [X, T(Y)]uBx
= xBly, T + yBIX T()]a + ¥BIX, T(¥)]a + xBLy, T(X)]o + xBIX, T(Y)]a+ xBLX, T(Y)]a
= xBly, TOTu + 20B[%, TOQLo + XBLy, T(X)]a + 381X, T(V)]a + XB[X, T(Y)].
= 2Ly, T()]a + [x, T()]a) + 208X, T(X)]s
Applying (2) and (3), we get the identity

[xBy + ypx, TX)], + [xBx, T(Y)], = 0 for all x,yel, a,f<T. @)
For xel, take y = T(X)oxBx in (4), thereby obtaining

[XBT(x) dxpx + T(x) dxpfix, T(X)]a + [xx, T(T(X) Gefx)]s

= XBT)BLxBx, T(X)]a + [BT(X), TOTuSxpx + T(X) KBLxpx

= TOa + [T(X) %, TOLuBxpx + T(T(X)BxAx, TONBT(X)]a + [xpx, T(T())]LTX)AT(X)

= xBTX)BMx, T()]a + DBT(X), TOTubxpx + T(X)B[XBx, T(X)]a + [T(X)SX, TO)]uSxpx

+ T(T())BLxpx, TBT(X)]a+ [xpx, T(T())]BT(X)BT(X)

=0, for all x,yel, a,ferl.
Now

[xpx, T()]a = xB[X, T + [X, T(X)]uBx

= xpx, T(X)]. + 28X, T(X)]a = 2¥B[X, T(X)]. = 0, for all x,yel, a,fel’ (5)
Replacing y = T(x) in above relation, we get for all xel, a,feT’,

[BT(X) + T()Bx, TOTAT(X)BT(X) + [xpx, T(T(X)]LT(X)BT(X) = 0 (6)
Replacing y by T(x) in (4), we get,

[xBT(X) + TO)Px, T(X)]a = XBT(X), T + [x, TH)]BTX) + T)BIX, T(X)]a

+[T(x), T(¥)]Bx

=[x TOTBT(X) + TOABLX, T(X)]a

= TOBIX, T(¥)]a + TH)BIX, T(X)].,

= 2T(X)Bx, T(X)],=0, forall x,yel, a,BeT.
So we get from (6) for all xel, a,peT’,

[xx, TITO)]BT(X)ET(X) =0 U]



518 Ona Pair of (o, 7)-derivations

On the other hand, taking y = T(x)X in (4) yields
[XAT(x) 5% + T(x) %X, T(X)]a + [xpx, T(T(X)X)]a
= DeBT(X) % + T(x)epx, T()]a + Do, T(T(X))T(X)]a
= BT % + T(x) e, T(X)]a + Pepx, T(T(X) X)].

Hence
[([x, TOYLa + 2T(X)px), TH)]BT(T(X)) + [xBx, T()1BT(X) + [xfx, T(X)].= 0
or, [x TO)1AIX T + [xBx, T(TX)]BT(X) =0  forall xel, a,fel (8)

From (8) it follows that w = [xfx, T(T(xX))]87(X) is central, and from (7) that wyw = 0.
It is now apparent from (8) that [x, T(X)].B[%, TO)luAX, T)]BX T(X)]. = 0, and the
absence of nonzero central nilpotent elements implies that [x, T(x)], = 0 for all xel, aeT.

Lemma 2.3

Let M be a semiprime I'-ring satisfying the condition (*). Let af[X, y], = 0, for a,x,yeM,
o,pel’, then aeZ(M).

Proof
Since af[x, y], = 0, for ax,yeM, a,Bel, then replace y by a, we get af[x, a], = 0, for
axeM, a,pel’. Thus we get afixoa = aflaax, for all a,xeM, a,fel.
Now [a, X],8[a, Y]. = (aox —xaa)p(aay —yaa)
= aoxfaay —aoxfyaa —xoafaoy + xoafyca
= aa(xfa)ay —ao(xpy)oa —xaafaay + xaaf(yaa)
= aaafxay —aaaoxpfy —xaafaoy + xoafaoy
= aaafxoy —aaaoxpfy = aaafxay —aaaPxoy =0, forall a,x,yeM, a,fel.
Hence [a, x],8[a, yl. =0, forall a,x,yeM, a,Bel.
Replace y by ydx, we get,

[a, X]Bla, yoX]. = [a, XlBvdla, X]o + [a, X]uB[a, Y]uoX = [a, X]Bydla, X]. = 0, for all
a,x,yeM, a,p,8eI’. By the semiprimeness of M we get, [a, x], = 0, for all a,xeM, aeT.

Hence aeZ(M), for all ae M.

Lemma 2.4 Let o,z be epimorphisms of a semiprime I'-ring M satisfying the assumption
(*) and such that z is centralizing. If d is a commuting (o, 7)-derivation of M, then [Xx,
yl.pd(u) = 0 = d(u)p[x, yl, for all x, y, ueM, a,f<T, in particular, d maps M into its center.

Proof

Since ris a centralizing epimorphism, by Lemma 2.2 zis commuting. Then we have [ z(X),
X]o= 0 and [d(x), x],= 0, for all xeM, a.eT.

Thus [7(X), Y]. = [X, 2(¥)]a Also, [d(X), Y], = [X, d(y)]. for all x, yeM, ael".
We consider
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[d(yBx), X]o = [yAX, d(X)]o = YAIX, d(¥)]a + [y, d(¥)]uBX = [y, d(x)].Bx
and
[d(yBx), X]o. = [o(y)Bd(x) + d(y)BX), X].
= o(y)Bld(x), X]. + [oly), X]oBd(x) +d(Y)BLAX), X].. + [d(Y), X]B2(X)
= [oly), X]oBd(x) + [d(y), X].B7(X), for X, yeM, a,fel’
From (9) and (10), we get [y, d(x)].fx = [oly), X],Bd(x) + [d(y), X],B(X)
Thus [y, d(X)]x — [X, dY)]B2X) = [o(y), X]Sd(x), forall x, yeM, a,fel.
[y, dX¥)]uBx — [y, dX)]Bx(x) = [oly), X]Bd(x), forallx,yeM, a,pel.

[y, dX¥)1B(x — «dx)) = [y, o()]upd(x) , forallx,yeM, a,pel’

We further consider
[x, qyBx)]a =[x, V)] e(X),
Again,
[x, 2yBx)]a = [(x), YAXla = [X, dY)]uBX + dY)BIX, dX)]e-= [X, oY)]uBx
From (12) and (13), we get [x, «y)]87(X) = [X, «y)].f%. Since zis onto, we get

X Y1.87X) = [x, yl.px  forall x, yeM, a,feT.
Replacing y by d(y) in (14), we have

[x, d)]Be(x) = [x, d(y)]ufx for all x, yeM, a,pel’
[, d(y)]ufx = [x, d(y)]f7(x) = 0
[, dy)]uB(x - 7(x)) = [d(x), ylB(x —=(x)) = 0

Using (15), from (11) we get [o(y), x].,8d(X) = 0. Since o is onto, we get

[y, X],pd(x) = 0 for all X, yeM, a,fel’
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Replacing y by y&z in (16), we get ydz, x].8d(x) + [y, X].dzBd(x) = 0, which along with

(16) yields

Ly, X]q0zpd(x) = O for all X, y, zeM, o, 5,0l
Linearizing (16) (in x), we get

[y, x + u]l,pd(x + u) = 0 for all X, yeM, a,fcl’

(7

[y, X]oBd(X) + [y, X]oBd(u) + [y, ul,Bd(X) + [y, ul,Bd(u) =0 for all x,y,ueM, a,fel.

[y, x]oBd(u) = [u, y]pd(x) for all x, y, ueM, a,pel’
Replacing z by d(u)Azd[u, y]. in (17) and using (18), we have
0= [y, X]opd(u)Azdlu, yl,Bd(x) = [y, X]ofd(u)Azdly, X].Ed(u).
The semiprimeness of M implies

[y, X]o,pd(u) = 0 for all X, y, ueM, a,fel’

(18)

(19)
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Substituting yoz for y in (19), we have [y, x],6z8d(u) = 0, and so

d(WALy, X]eozBd(u)Bly, x], =0. Since M is semiprime, we get d(u)A[y, x], = 0 for all x, y,
ueM, a,pel’. Thus [X, y],Bd(u) = 0 = d(u)B[X, y]. for all x, y, ueM, a eI, and further
d(u)eZ(M).

Now we prove our main result.

Theorem 2.5. Let M be a 2-torsion free semiprime T'-ring satisfying the assumption (*)
and o, rbe centralizing epimorphisms of M. Let f, g be (o, 7)-derivations of M such that

f(xX)ax + xag(x) = 0 for all xeM, ael. (20)
Then g(u)BIx, yl. = f(u)B[x, yl, = 0 for all x, y, ueM, o,f<T and f, g map M into its center.
Proof

Since o, r are centralizing epimorphisms, they are commuting by Lemma 2.2 and hence o
— 1 is a commuting o-derivation and z— 1 is a commuting zderivation. Thus by Lemma
2.3 we get

O'(U) - UEZ(M)v G(U)ﬁ[x, y]u = Uﬁ[x, y]u and

[X ylBo(u) = [x, y],pu for all x, y, ueM, a,fel (21)
and for all x, y, ueM, a,BeT,
?(u) — ueZ(M), {u)Bx, yl. = uBx, yl. and [x, yl.f(u) = [x, yl.pu (22)

Linearizing (20), we get
f(X)ay + f(y)ax + xag(y) + yeg(x) = 0 for all X, yeM, acl’ (23)

Replacing y by ygx in (23) and using (21), we get
0 = f(x)aypx + oly)Bf(x)ax + f(y)Br(x)ax + xao{y)BY(x) + xag(y)B=X) + ypxag(X)
= f(X)aypx + o(y)pf(x)ax + f(y)B((X) — X)ax + f(y)Bxex + xa(o(y) — y)B9(X)
+ Xaypg(x) + xag(y)Br(x) + yoxpg(x)
= f(X)aypx + o(y)pf(x)ax + (2(x) — X)Bf(y)ax + f(y)Bxex + (oly) — y)axBg(x)
+ Xaypa(x) + xag(y)Br(x) + yoxpg(x)
= f(X)aypx + o(y)B(f(x)ax + xag(x)) + (7X) — X)af(y)ax + f(y)Bxex — yoxpg(x)
+ xaypg(x) + xag(y)a((x) — X) + Xag(y)Bx + yaxpg(x)
= f()aypx + f(y)axpx + xaypg(x) + xag(y)px + (2(x) — x)B(f(y)ox + xag(y))
= (f(x)ay + f(y)ox + xag(y))Bx + xaypa(x) + (#(x) — X)B(f(y)ax + xag(y)).
That is for all x, yeM, a,fel’,
(f()ay + f(y)ax + xag(y))px + xaypg(x) + («(x) — x)B(f(y)ax + xag(y)) = 0 (24)
By (23) and (24), we get
0 = —yag(X)Bx + xaypg(x) + («(x) — X)B(f(y)ax + xag(y))
= =[ypg(x), Xl + ((x) = X)B(f(y)ax + xag(y))-
That is,
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~[yAa(x), x]a + () = X)B(f(y)ax + xag(y)) = 0 for all x, yeM, a,fel’ (25)

Let zeM. Then by (25), we get
0 = [[-yB9(9), XJa: Z]u + [(dX) — X)B(F(Y)ox + Xag(y)), Z]u

= ~[yBg(), Xas 2la + (ox) = X)BLE(Y)ex + xag(y), z]o + [oX) — X, Z]B(F(y)ox + xag(y)).
Using (22), we get

[(yp9(%), o, 20, =0 forall x,y, zeM, o, feT (26)
From (26) we get [yfg(x), X], €Z(M) for all x, yeM, a,f<T" and, in particular,

[[yB9(X), X]o, X]« =0 forall x, yeM, a,fel’ @7)

Replacing y by zay in (27) we get for all x, yeM, o,feT,
[[zaBg(X), X]a X
= [zalyBg(X), Xla, X1o + [z, XluaDvBg(X), X
= [z, XlualyBg(x), 1o + zalyBI9(9), X]a Xa + [z, X]aalyBg(X), X].
= 2[z, XJooDBg(x), Xl + zo[[vAg(¥), Xl ] =0 (28)

Replacing z by yfg(x) in (28) and using (27), we get 2[ypg(x), x],a[vpg(X), X], = 0. Since
M is 2-torsion free and, being semiprime, has no nonzero central nilpotents, we have,

[ypa(x), x]o =0 forall x,yeM, a,fcl’ (29)
Replacing y by zay in (29), we get

[z, X]qoypg(x) =0 forall x,y, zeM, a,fel (30)
Replacing y by g(xX)pyAz, x], in (30), we get

[z, X]o0g(X)BYAZ, X],f9(X) = 0 for all x, y, zeM, o,B,y<T.
Since M is semiprime, we get

[z, X],B9(x) =0 forall x, zeM, a,fel’ (31)

Using (29) and (31), we get ys[g(x), x], = 0 for all x, yeM, a,f<I" and hence by the
semiprimeness of M, we have [g(x), X], = O for all xeM. Thus g is a commuting (o, 7)-
derivation of M. Hence, by Lemma 2.3, g(x)Z(M) and g(u)B[x, y]. = 0 for all u, x, yeM,
a,pel’. Also, f(x)eZ(M) and f(u)B[x, y], = 0 for all u, x, yeM, a,peT follows analogously.

Theorem 2.6 Let M be a 2-torsion free semiprime I'-ring satisfying the assumption (*). If
f, g are derivations on M such that f(x)ax + xag(x) = 0 for all xeM, ael’, then f(u)A[X, Y],
=g(u)B[x, yl.=0 forall x, y, ueM, a,B<T, in particular, f, g map M into its center.
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Proof
Since derivations are (1, 1)-derivations, it follows immediately from Theorem 2.5.

Corollary 2.7 Let M be a 2-torsion free prime I"-ring satisfying the assumption (*) and o,
rcentralizing epimorphisms of M. Let f, g be (o, 7)-derivations of M such that f(X)ax +
xag(x) = 0 for all xeM, ael'. Then either M is commutative or f =g =0.

Proof

Since the center of a prime I'-ring contains no nonzero divisors of zero, this corollary is
immediate from Theorem 2.5.

Theorem 2.8 Let M be a 2-torsion free semiprime I'-ring satisfying the assumption (*)
and o, rcentralizing epimorphisms of M. Let f, g be (o, 7)-derivations of M such that

f(xX)ax + xag(x)eZ(M) for all xeM, acl’ (32)
Then (i) ifZ(M)=0,thenf=g=0, and

(i) if Z(M) = 0, then cSF(U)B[X, Y]o = cSI(U)BIX, Y]. = 0 and c&(x), cog(x)eZ(M)
forall x,y, ueM, a,p,0cI” and nonzero ceZ(M).

Proof

(i) Assume that Z(M) = 0. Then, by hypothesis, f(x)ax + xag(x) = 0 for all xeM, a<I" and
hence by Theorem 2.5, f(x), g(x)eZ(M). Since Z(M) = 0, we have

f(x) = g(x) =0 for all xeM. Thus f =g =0.

(if) Let Z(M) = 0 and c be a nonzero element of Z(M). Since o, r are centralizing
epimorphisms, therefore, as in Theorem 2.5,

o(u) —ueZ(M), o{u)Bx yl. = uplx, yl. and [x, yl,Bo(u) = [x, yl,fu (33)
And for all u, X, yeM, a,peT,
o(u) —ueZ(M), du)B[x, yl. = uplx, yl. and [x, yl,87(u) = [x, yl.fu (34)

Moreover, since oand rare onto, therefore o(c) and z(c)eZ(M).
Linearizing (32), we get

f(X)ay + f(y)ax + xag(y) + yag(x)eZ(M) for all x, yeM, ael’ (35)
Replacing y by c in (35), we get for all xeM, aeTl,

f(x)ac + f(c)ax + xag(c) + cag(x)eZ(M) (36)
Replacing y by c&c in (35), we get

f(xX)acoc + f(coc)ax + xag(cde) + cocag(x)

= cif(x)ac + cag(x)) + (ofc) + =(c)) &f(c)ox + xag(c))

= cXf(x)ac + cag(x) + f(c)ax + xag(c)) + (ofc) + c) — c)&f(c)ox + xag(c))
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= cAf(x)ac + cag(x) + f(c)ax + Xag(c)) + (o(c) + =(c) — c)Af(c)ax + xag(c)
+f(x)ac + cag(x)) — (o(c) + #(c) — c)Kf(x)ac + cag(x))eZ(M).
That is for all x,ceM, a,5€T,
(o(c) + #c)) Af(X)ac + cag(x) + f(c)ax + xag(c))
—(o(c) + () — c)Af(X)ac + cag(x))eZ(M) @37)

As o(c) + 7(c)eZ(M) and by (36) the first summand in (37) is in Z(M), (37) implies
(o(c) + =(c) — c)Af(x)ac + cag(x))
= (o(c) + 7(c) — c)dca(f(x) + g(x))eZ(M) for all xeM, a,deT".
Thus
(o(c) + #c) — c)sca(f(x) + g(x))eZ(M) for all xeM, o, €T (38)
Since ¢, (o(c) + 7(c) — ¢c)oceZ(M) and f, g are (o, 7)-derivations, therefore

((o(c) + #(c) — c)c)af, ((ofc) + #c) — c)oc)ag, cof and ¢y are (o, 7)-derivations. Thus
((o(c) + c) — c)sc)a(f + g) is an (o, 7)-derivation and (38) implies that it is central and
hence a commuting (o, 7)-derivation. Thus by Lemma 2.4, we get

((ofc) + =(c) — c))a(f +g)(u)p[x, yl, =0 forall u, x, yeM, a,f,6el’ (39)
Using (32) and (33), from (31) we get

0 = (f+ g)(u)B(o(c) + =) — c)5chIX, yla

= (f+ g)(u)Bedo(c) + «(c) — C)BIX, Yla

((f+ g)(u)Bc) A o(C)BIx, Y1 + dC)BIX, V1. — cBIX, Y]a)

((f + g)(W)BC) AcPIX, ylo + cBIX, ylu — cBIX, V1. = (F + g)(u)BcochlX, Y.

=cfedf + g)(u)BIX, yl. for all u, x, yeM, a,f el That is,

cicpf(u) + g(W)B[x, y]l, =0 for all u, x, yeM, o,B,6€l’ (40)
As ceZ(M) and M is semiprime, it follows from (30) that

cAf(u) + g(u)BIx, yl, =0 for all u, x, yeM, o,B,6el’ (41)

Similarly, we have [x, y],scqf(u) + g(u)) = 0. Thus, by Lemma 2.3 we get

cof(u) + cog(u)eZ(M). Using this and (31), we get

[(cof(u) + cog(u))Bu, yl. = (cot(u) + cag(u)Alu, yl. + [cof(u) + cog(u), yl,Bu = 0. That is,
[cof(u)Bu + cag(u)pu, y], = 0 for all u, yeM, a,f, 6T (42)

Since ceZ(M) and f(u)pu + upg(u)ez(M) (by 32)), we get cof(u)pu + coupg(u)eZ(M).

Thus

[cof(u)pu + caupg(u), y], =0 for all u, yeM, a,p,6el’ (43)
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Subtracting (43) from (42), we get [cog(u)pu — caupg(u), yl. = 0. That is, [cAg(u)pu —
upg(u)), yl. = [cdlg(u), ulp, yl. = [[cag(u), ulg, yl. = O for all u, yeM, a,8,6€I’, which
implies [cog(u), uls €Z(M). Thus cdy is a centralizing (o, 7)-derivation. We get that cog is
a commuting (o, 7)-derivation. By Lemma 2.3, we get cag(u) eZ(M) and cag(u)S[x, Yl

=0 forall u, x, yeM, a,p,0cI". Since cof(u) + cog(u)eZ(M) and cog(u)eZ(M), therefore
cof(u)eZ(M). Thus cdf is central and hence a commuting (o, 7)-derivation. By Lemma
2.3, we get cof(u)eZ(M) and cSF(u)B[x, y], = 0 for all u, x, yeM, a8, 0T
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