Some Remarks on Fuzzy R_0, R_1 and Regular Topological Spaces

D. M. Ali1 and F. A. Azam2*

1Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh
2Institute of Natural Sciences, United International University, Dhaka-1209, Bangladesh

Received 12 December 2010, accepted in revised form 18 February 2012

Abstract

In this paper, five regular-axioms, eighteen R_1-axioms and nine R_0-axioms for fuzzy topological spaces are recalled. A complete answer is given with regard to all possible $(R_1 \Rightarrow R_0)$-type implications for fuzzy topological spaces. It is also shown that, though the regular-axiom implies R_1-axiom in ‘general topological spaces’, this is not true for ‘fuzzy topological spaces’, in general.

Keywords: Fuzzy Topological Space; Fuzzy R_1-axiom; Fuzzy R_0-axiom; Fuzzy regular axiom.

© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

1. Introduction

In 1965, Zadeh [1] defined fuzzy sets with a view to study and formulate mathematically those situations which are imprecise and vaguely defined. Since then, fuzzy set theory has been developed in many directions by many scholars. Chang [2] gave the concept of ‘fuzzy topology’. He did the ‘fuzzification’ of topology by replacing ‘subsets’ in the definition of topology by ‘fuzzy sets’. In 1976, Lowen [3] gave a modified definition of ‘fuzzy topology’. Hutton and Reilly [4] introduced the concept of fuzzy R_0 and R_1 axioms. These studies were further carried out by many researchers [5-13]. In this paper we recall nine R_0-axioms from [9], eighteen R_1-axioms from [11] and five regular axioms from [7, 8] for fuzzy topological spaces (fts, in short). In analogy with the well known topological properties like $(regular \Rightarrow R_1)$ and $(R_1 \Rightarrow R_0)$, we study these types of properties for fts. We give a complete answer with regard to all possible $(R_1 \Rightarrow R_0)$-type implications for fts. It is also shown that, the property $(R_1 \Rightarrow R_0)$ is also true for fts; however, the property $(regular \Rightarrow R_1)$ is not true for fts, in general.

* Corresponding author: faqruddinaliazam@gmail.com
1.1 Preliminaries

In this section, we recall some definitions on fuzzy sets and fts which will be needed in the sequel.

Definition-1.1.1. [1]: Let \(X \) be a non-empty set and \(I \) the unit closed interval \([0, 1]\). A fuzzy set is a function \(u: X \to I, \forall \ x \in X \); \(u(x) \) denotes a degree or the grade of membership of \(x \). The set of all fuzzy sets in \(X \) is denoted by \(I^X \). Ordinary subsets of \(X \) (crisp sets) are also considered as the members of \(I^X \) which take the values 0 and 1 only. A crisp set which always takes the value 0 is denoted by 0; similarly a crisp set which always takes the value 1 is denoted by 1.

Definition-1.1.2. [10]: Let \(u: X \to I \). Then the set \(\{ x \in X: u(x) > 0 \} \) is called the support of \(u \) and is denoted by \(u_0 \) or \(\text{supp}(u) \). Let \(A \subseteq X \), then by \(1_A \) we denote the characteristic function \(A \). The characteristic function of a singleton set \(\{ x \} \) is denoted by \(1_x \).

Definition-1.1.3. [10]: Let \(u \) be a fuzzy set in \(X \). Then by \(u^c \), we denote the complement of \(u \) which is defined as \((u^c)(x) = 1 - u(x), \forall \ x \in X \).

Definition-1.1.4. [1]: Let \(u \) and \(v \) be two fuzzy sets in \(X \). We define

(i) \(u = v \) if and only if \(u(x) = v(x), \forall \ x \in X \).

(ii) \(u \subseteq v \) if and only if \(u(x) \leq v(x), \forall \ x \in X \).

(iii) \((u \cup v)(x) = \max\{u(x), v(x)\}, \forall \ x \in X \).

(iv) \((u \cap v)(x) = \min\{u(x), v(x)\}, \forall \ x \in X \).

Definition-1.1.5. [1]: For a family of fuzzy sets \(\{ u_i : i \in J \} \) in \(X \). We define

(i) \(\bigcup_{i \in J} u_i(x) = \sup\{u_i(x)\}, \forall \ x \in X \).

(ii) \(\bigcap_{i \in J} u_i(x) = \inf\{u_i(x)\}, \forall \ x \in X \).

Definition-1.1.6. [14]: A fuzzy point \(x_\alpha \) in \(X \) is a special type of fuzzy set in \(X \) with the membership function \(x_\alpha(x) = \alpha \) and \(x_\alpha(y) = 0 \) if \(x \neq y \), where \(0 < \alpha < 1 \) and \(x, y \in X \). The fuzzy point \(x_\alpha \) is said to have support \(x \) and value \(\alpha \). We also write this as \(\alpha 1_x \).

Definition-1.1.7. [14]: Let \(\alpha 1_x \) be a fuzzy point in \(X \) and \(u \in I^X \). Then \(\alpha 1_x \in u \) if and only if \(\alpha \leq u(x) \).

Definition-1.1.8. [10]: Let \(f: X \to Y \) be a mapping and \(u \in I^X \). Then the image \(f(u) \) is a fuzzy set in \(Y \) which is defined as
\[
f(y) = \begin{cases}
\sup \{u(x) : f(x) = y\} & \text{if } f^{-1}(y) \neq \emptyset \\
0 & \text{if } f^{-1}(y) = \emptyset
\end{cases}
\]

Definition-1.1.9. [10]: Let \(f: X \to Y \) be a mapping and \(u \) be a fuzzy set in \(Y \). Then the inverse image \(f^{-1}(u) \) is a fuzzy set in \(X \) which is defined by \(f^{-1}(u)(x) = u(f(x)) \quad \forall \ x \in X \).

Definition-1.1.10. [2]: Chang [2] defined an fts as follows:

Let \(X \) be a set. A class \(t \) of fuzzy sets in \(X \) is called a fuzzy topology on \(X \) if \(t \) satisfies the following conditions:

(i) \(0, 1 \in t \),

(ii) if \(u, v \in t \) then \(u \land v \in t \) and

(iii) if \(\{u_i : i \in K\} \) is a family of fuzzy sets in \(t \), then \(\bigvee_{i \in K} (u_i) \in t \).

The pair \((X, t)\) is then called an fts. The members of \(t \) are called \(t \)-open sets (or open sets) and their complements are called \(t \)-closed set (or closed sets).

Definition-1.1.11. [3]: Lowen [3] modified the definition of an fts defined by Chang [2] by adding another condition. In the sense of R. Lowen [3], the definition of an fts is as follows:

Let \(X \) be a set and \(t \) a family of fuzzy sets in \(X \). Then \(t \) is called a fuzzy topology of \(X \) if the following conditions hold:

(i) \(0, 1 \in t \),

(ii) if \(u, v \in t \) then \(u \land v \in t \),

(iii) if \(\{u_i : i \in K\} \) is a family of fuzzy sets in \(t \), then \(\bigvee_{i \in K} (u_i) \in t \) and

(iv) \(t \) contains all constant fuzzy sets in \(X \).

The pair \((X, t)\) is called an fts. Throughout this work, we use the concept of fts due to Lowen [3].

Definition-1.1.12. [10]: Let \(u \) be a fuzzy set in an fts \((X, t)\). Then the fuzzy closure \(\overline{u} \) and the fuzzy interior \(u^0 \) of \(u \) are defined as follows: \(\overline{u} = \inf \{\lambda : u \leq \lambda \text{ and } \lambda \in t^c\} \), \(u^0 = \sup \{\lambda : \lambda \leq u \text{ and } \lambda \in t\} \).

Definition-1.1.13. [2]: Let \(f: (X, t) \to (Y, s) \) be a mapping between fts. Then \(f \) is called

(i) fuzzy continuous if and only if \(f^{-1}(u) \in t \) for each \(u \in s \).

(ii) fuzzy open if and only if \(f(u) \in s \) for each \(u \in t \).
Some Remarks on Fuzzy

(iii) fuzzy closed if and only if \(f(u) \in s^c \) for each \(u \in t^c \).

2. Fuzzy \(R_0 \) topological spaces

In this section, we recall nine \(R_0 \)-axioms of fts from [9].

Definitions-2.1. [9]: We define, for fts \((X, t)\), \(R_0 \)-axioms as follows:

\(R_0^1 \) : For every pair \(x, y \in X, x \neq y, \bar{I}_y(x) = 0 \Rightarrow \bar{I}_x(y) = 0 \)

\(R_0^2 \) : For every pair \(x, y \in X, x \neq y, \left(\forall \alpha \in I_0, \bar{\alpha}I_x(y) = \alpha \right) \Leftrightarrow \left(\beta \bar{I}_y(x) = \beta, \forall \beta \in I_0 \right) \)

\(R_0^3 \) : \(\forall \lambda \in t, \forall x \in X \) and \(\forall \alpha < \lambda(x) \), \(\bar{\alpha}I_x \leq \lambda \)

\(R_0^4 \) : \(\forall \lambda \in t, \forall x \in X \) and \(\forall \alpha \leq \lambda(x) \), \(\bar{\alpha}I_x \leq \lambda \)

\(R_0^5 \) : For every pair \(x, y \in X, x \neq y \), \(\bar{I}_x(y) = 1 \Rightarrow \bar{I}_y(x) = 1 \)

\(R_0^6 \) : For every pair \(x, y \in X, x \neq y \), \(\bar{I}_x(y) = \bar{I}_y(x) \)

\(R_0^7 \) : For every pair \(x, y \in X, x \neq y \), \(\bar{I}_x(y) = \bar{I}_y(x) \in \{0, 1\} \)

\(R_0^8 \) : For every pair \(x, y \in X, x \neq y \) and \(\forall \alpha \in I_0, \bar{\alpha}I_x(y) = \alpha \Rightarrow \bar{\alpha}I_y(x) = \alpha \)

\(R_0^9 \) : For every pair \(x, y \in X, x \neq y \) and \(\forall \alpha \in I_0, \bar{\alpha}I_x(y) = \bar{\alpha}I_y(x) \)

Theorem-2.1 [9]: The accompanying diagram (Fig. 1) illustrates the interrelations among the \(R_0 \)-properties mentioned in the section 2:

![Fig. 1. Interrelations among the \(R_0 \)-properties [9].](image)

For proof see [9]. □
3. Fuzzy R_1-topological spaces

In this section, we recall eighteen definitions of fuzzy R_1-topological spaces from [11].

Definitions-3.1 [11]: An fts (X, t) is said to have the property

1. **P1**, if $\forall x, y \in X, x \neq y$, $\exists w \in t$ such that $w(x) \neq w(y)$.

2. **P2**, if $\forall x, y \in X, x \neq y$, $\exists w \in t$ such that $w(x) > 0 = w(y)$.

3. **P3**, if $\forall x, y \in X, x \neq y$, $\exists w \in t$ such that either $w(x) = 1$, $w(y) = 0$ or $w(x) = 0$, $w(y) = 1$.

4. **Q1**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $\bar{x} \leq u, \bar{y} \leq v$ and $u \wedge v = 0$.

5. **Q2**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $\bar{x} \leq u, \bar{y} \leq v$ and $u \leq 1 - v$.

6. **Q3**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $u(x) = 1 = v(y)$ and $u \wedge v = 0$.

7. **Q4**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $u(x) = 1 = v(y)$ and $u \leq 1 - v$.

8. **Q5**, if $\forall x, y \in X, x \neq y$ and $\forall \alpha, \beta \in I_{0,1}$, $\exists u, v \in t$ such that $u(x) > \alpha$ and $v(y) > \beta$ and $u \wedge v = 0$.

9. **Q6**, if $\forall x, y \in X, x \neq y$, $\exists u, v \in t$ such that $u(x) > 0$, $v(y) > 0$ and $u \wedge v = 0$.

Definitions-3.2 [11]: An fts (X, t) is called an

1. **FR$_1(i)$**-fts, if (X, t) has **P1** implies (X, t) has **Q1**.

2. **FR$_1(ii)$**-fts, if (X, t) has **P1** implies (X, t) has **Q2**.

3. **FR$_1(iii)$**-fts, if (X, t) has **P1** implies (X, t) has **Q3**.

4. **FR$_1(iv)$**-fts, if (X, t) has **P1** implies (X, t) has **Q4**.

5. **FR$_1(v)$**-fts, if (X, t) has **P1** implies (X, t) has **Q5**.

6. **FR$_1(vi)$**-fts, if (X, t) has **P1** implies (X, t) has **Q6**.

7. **FR$_1(vii)$**-fts, if (X, t) has **P2** implies (X, t) has **Q1**.

8. **FR$_1(viii)$**-fts, if (X, t) has **P2** implies (X, t) has **Q2**.

9. **FR$_1(ix)$**-fts, if (X, t) has **P2** implies (X, t) has **Q3**.

10. **FR$_1(x)$**-fts, if (X, t) has **P2** implies (X, t) has **Q4**.

11. **FR$_1(xi)$**-fts, if (X, t) has **P2** implies (X, t) has **Q5**.

12. **FR$_1(xii)$**-fts, if (X, t) has **P2** implies (X, t) has **Q6**.

13. **FR$_1(xiii)$**-fts, if (X, t) has **P3** implies (X, t) has **Q1**.

14. **FR$_1(xiv)$**-fts, if (X, t) has **P3** implies (X, t) has **Q2**.

15. **FR$_1(xv)$**-fts, if (X, t) has **P3** implies (X, t) has **Q3**.
16. \(\text{FR}_1(xvi) \)-fts, if \((X, t)\) has \(P3 \Rightarrow (X, t)\) has \(Q4\).
17. \(\text{FR}_1(xvii) \)-fts, if \((X, t)\) has \(P3 \Rightarrow (X, t)\) has \(Q5\).
18. \(\text{FR}_1(xviii) \)-fts, if \((X, t)\) has \(P3 \Rightarrow (X, t)\) has \(Q6\).

Theorem-3.3 [11]: The accompanying diagram (Fig. 2) illustrates the interrelations among the \(\text{FR}_1\)-properties mentioned in Section 3:

Fig. 2. Interrelations among the \(R_1\)-properties [11].

For proof see [11]. □

4. Relations between fuzzy \(R_0\) and \(R_1\)-axioms

In this section, we give a complete answer with regard to all possible \((R_1 \Rightarrow R_0)\)-type implications for fts.

Theorem-4.1: The following relations hold between the fuzzy \(R_0\)-axioms and fuzzy \(R_1\)-axioms:

(a) \(\text{FR}_1(xvi) \Rightarrow R_0^1 \), and so \(\text{FR}_1(k) \Rightarrow R_0^1 \), where \(k \in \{i - iv, vii - x, xiii - xvi\} \).

(b) \(\text{FR}_1(xiii) \nRightarrow R_0^5 \), and so \(\text{FR}_1(k) \nRightarrow R_0^m \), where \(k \in \{xiii, xiv, \ldots, xviii\} \) and \(m \in \{5, 6, \ldots, 9\} \).

(c) \(\text{FR}_1(v) \Rightarrow R_0^8 \), and so \(\text{FR}_1(k) \Rightarrow R_0^m \) where \(k \in \{i, iii, v\} \) and \(m \in \{2, 5, 8\} \).

(d) \(\text{FR}_1(vi) \Rightarrow R_0^2 \), and so \(\text{FR}_1(k) \Rightarrow R_0^2 \) where \(k \in \{i, iii, v, vi\} \).

(e) \(\text{FR}_1(vi) \nRightarrow R_0^8 \), and so \(\text{FR}_1(k) \nRightarrow R_0^m \), where \(k \in \{vi, xii, xviii\} \) and \(m \in \{8, 9\} \).

(f) \(\text{FR}_1(vi) \Rightarrow R_0^3 \), and so \(\text{FR}_1(k) \Rightarrow R_0^m \), where \(k \in \{vi, xii, xviii\} \) and \(m \in \{3, 4\} \).
(g) $FR_1(iv) \Rightarrow R_0^4$, and so $FR_1(k) \Rightarrow R_0^m$ where $k \in \{i-iv\}$ and $m \in \{1, 2, 3, 4\}$.

(h) $R_0^m \Rightarrow FR_1(k)$, where $k \in \{i, ii,, xvi\}$ and $m \in \{1, 2,, 9\}$.

Proof (a): Let (X, t) be an $FR_1(xvi)$-fts and $x, y \in X$, $x \neq y$ such that $\overline{I}_y(x) = 0$. Therefore, $\exists \lambda \in t^c$ such that $\lambda(y) = 1$ and $\lambda(x) = 0$. Take $w = 1 - \lambda$. Now $w \in t$ such that $w(x) = 1$ and $w(y) = 0$. Since, (X, t) is an $FR_1(xvi)$-fts, $\exists u, v \in t$ such that $u(x) = 1 = v(y)$ and $u \leq 1 - v$. Put, $\kappa = 1 - v \in t^c$. Now $\kappa(y) = 0$ and $\kappa(x) = 1$. Consequently, $\overline{I}_x(y) = 0$. Hence (X, t) is R_0^1. □

Proof (b):
Example-1: Consider a fuzzy topological space (X, t), where $X = \{x, y\}$, $u(x) = 0.5$, $u(y) = 0$ and $t = \{\{u\} \cup \{\text{constants}\}\}$. Clearly, (X, t) is $FR_1(xiii)$ but it is not R_0^5. For $\overline{I}_x(y) = 1$ but $\overline{I}_y(x) < 1$. □

Proof (c): Let (X, t) be an $FR_1(\nu)$-fts. Let $x, y \in X$, $x \neq y$, $\alpha \in I_0$ such that $\overline{aI}_x(y) < \alpha$. This implies that there exists $m \in t^c$ such that $m(x) = \alpha$ and $m(y) < \alpha$. Let $w = 1 - m \in t$. Then $w(x) \neq w(y)$. Since, (X, t) is an $FR_1(\nu)$-fts, there exist $u, v \in t$ such that $u(x) > \alpha_1$, $v(y) > \alpha_2$, and $u \wedge v = 0 \forall \alpha_1, \alpha_2 \in I_0, 1$. Choose α_1, α_2 in such a way that $\alpha = \alpha_2$ and $\alpha_1 > 1 - \alpha$. Now $\alpha_1 y < v \leq 1 - u$. Therefore, $\overline{aI}_y \leq \overline{1-u} = 1 - u$ and so $\overline{\alpha_1 y}(x) \leq 1 - u(x) < 1 - \alpha_1 < \alpha$. Hence, (X, t) is R_0^8. [Note 9]:

$(\forall \alpha \in I_0, \overline{aI}_x(y) = \alpha \Rightarrow \overline{aI}_y(x) = \alpha) \Leftrightarrow (\forall \alpha \in I_0, \overline{aI}_x(y) < \alpha \Rightarrow \overline{aI}_y(x) < \alpha)$] □

Proof (d): Let (X, t) be an $FR_1(vi)$-fts. Let $x, y \in X$, $x \neq y$ and $w \in t$ such that $w(x) > w(y)$. Then, by $FR_1(vi)$ there exist $u, v \in t$ such that $u(x) > 0$, $v(y) > 0$ and $u \wedge v = 0$. Clearly, $v(y) > v(x)$. Hence, (X, t) is R_0^2. [Note 9]: \{An fts (X, t) is R_0^2} $\Leftrightarrow \{\forall x, y \in X, x \neq y, \text{if} \exists \text{a} t$-open set λ such that $\lambda(y) < \lambda(x)$ then \exists a t-open set μ such that $\mu(x) < \mu(y)$\}. □

Proof (e):
Example-2: Consider an fts (X, t) where $X = \{x, y\}$, $t = \{\{u_1, u_2, u_3, u_4\} \cup \{\text{constants}\}\}$, $u_1(x) = u_1(y) = 0.6$, $u_2(y) = 0.7$, $u_3(x) = u_4(y) = 0$, $u_3(y) = 0.8$ and $u_4(x) = 0.4$. It can be checked that (X, t) is $FR_1(vi)$. Let $m_k = 1 - u_k$, $k = 1, 2, 3, 4$. Now $m_1(x) = 0.4 = m_2(x)$, $m_3(x) = 1$, $m_4(x) = 0.6$, $m_1(y) = 0.4$, $m_2(y) = 0.3$, $m_3(y) = 0.2$.
334 Some Remarks on Fuzzy

and \(m_d(y) = 1 \). Take \(\alpha = 0.4 \). Then \(\overline{\alpha l}(y) = 0.2 < \alpha \) . But \(\overline{\alpha l}(x) = 0.4 = \alpha \) . Therefore, \((X, t)\) is not \(R_0^8 \). □

Proof (f):

Example-3: Consider an fts \((X, t)\) where \(X = \{x, y\} \), \(u(x) = 0.6 \), \(u(y) = 0 = v(x) \) and \(v(y) = 0.4 \). Clearly, \((X, t)\) is \(FR_1(vi) \). Let \(\alpha = 0.5 \). Now \(\alpha < u(x) \). It can be checked that \(\overline{\alpha l}(y) = \alpha > u(y) \). Therefore, \(\overline{\alpha l}(y) \notin u \). Hence, \((X, t)\) is not \(R_3^0 \). □

Proof (g): Let \((X, t)\) be an \(FR_1(v) \)-fts. Let \(x \in X \), \(\lambda \in \ell \) and \(\alpha \in \ell \) such that \(\alpha \leq \lambda(x) \).

Suppose \(\overline{\alpha l}(x) \notin \lambda \). This implies that there exist \(y \in X \), \(x \neq y \) such that \(\overline{\alpha l}(y) > \lambda(y) \). Thus \(\lambda(x) \neq \lambda(y) \). Hence there exist \(p, q \in \ell \) such that \(p(x) = 1 = q(y) \) and \(p \leq 1 - q \). Put \(m = 1 - p \) and \(n = 1 - q \). Now \(m, n \in \ell \) such that \(m(x) = 0 = n(y) \) and \(m(y) = 1 = n(x) \). Therefore, \(\overline{\alpha l}(x) \leq \overline{\lambda l}(y) \leq n(y) = 0 \), which is a contradiction. Therefore, \(\overline{\alpha l}(x) \leq \lambda \). Hence \((X, t)\) is \(R_4^0 \). □

Proof (h):

Example-4 [13]: Let \(X \) be an infinite set. For \(x, y \in X \), we define \(U_{xy} \in I^X \) as follows:

\[
U_{xy}(z) = \begin{cases}
0 & \text{if } z \in \{x, y\} \\
1 & \text{if } z \notin \{x, y\}
\end{cases}
\]

Let \(t \) be the fuzzy topology on \(X \) generated by \(\{U_{xy} : x, y \in X\} \). It can be checked that if \(x \neq y \), \(\overline{\lambda l}(y) = 0 \). Therefore, \((X, t)\) is \(R_0^4 \), \(R_0^7 \) and \(R_0^9 \). But \((X, t)\) is neither \(FR_1(xvii) \) nor \(FR_1(xviii) \) as there exist no \(u, v \in t \) such that \(u \leq 1 - v \). Therefore, \((X, t)\) is not \(FR_1(k), k \in \{i, ii, ..., xviii\} \). □

5. Fuzzy regular axioms

In this section, we recall five definitions of fuzzy regular axioms from [7, 8], and we show that, the well known topological property \((regular \Rightarrow R_1)\) is not true, in general, for fts.

Definition-5.1: An fts \((X, t)\) is called

(a) \(FR(i) \) if and only if \(\alpha \in \ell_0, \lambda \in \ell, x \in X \) and \(\alpha \leq 1 - \lambda(x) \) imply that there exist \(u, v \in t \) such that \(\alpha \leq u(x), \lambda \leq v \) and \(u \leq 1 - v \).

(b) \(FR(ii) \) if and only if \(\alpha \in \ell_0, \lambda \in \ell, x \in X \) and \(\alpha \leq 1 - \lambda(x) \) imply that there exist \(u, v \in t \) such that \(\alpha \leq u(x), \lambda \leq v \) and \(u \leq 1 - v \).
(c) $FR(iii)$ if and only if each $u \in t$ is a supremum of $u_j, j \in J$, where $\forall j, u_j \in t$ and $u_j \leq u$.

(d) $FR(iv)$ if and only if $\lambda \in \mathcal{T}, x \in X$ and $\lambda(x) = 0$ imply that there exist $u, v \in t$ such that $u(x) = 1$, $\lambda \leq v$ and $u \leq 1 - v$.

(e) $FR(v)$ if and only if $\lambda \in \mathcal{T}, x \in X$ and $1 - \lambda(x) > 0$ imply that there exist $u, v \in t$ such that $u(x) > 0$, $\lambda \leq v$ and $u \leq 1 - v$.

Note-1 [7, 8]: Let $x \in X$ and λ be a fuzzy set in X. Then for $\alpha \in I_0$, “$\alpha \leq \lambda(x)$” means $\alpha < \lambda(x)$ if $\alpha \neq 1$ and $\lambda(x) = 1$ if $\alpha = 1$.

Note-2 [7, 8]: The following implications exist among $FR(i)$, $FR(ii)$, …, $FR(v)$:

$$FR(i) \Rightarrow FR(ii) \Rightarrow FR(iii) \Rightarrow FR(v) \Downarrow FR(iv)$$

For proof see [7, 8, 10]. □

Example-5: Let $X = \{x, y, z\}$. For every pair $x, y \in X$ we define $U_{xy} \in I^X$ as follows:

$U_{xy}(x) = 1$, $U_{xy}(y) = 0$ and $U_{xy}(z) = 0.5$. Let t be the fuzzy topology on X generated by $\left\{U_{xy} \in I^X : x, y \in X\right\}$. Now it can be easily verified that (X, t) is $FR(i)$. But (X, t) is neither $FR_x(xvi)$ nor $FR_x(xvii)$, since there exist no $u, v \in t$ such that $u \wedge v = 0$. Therefore, $FR(k) \not\Rightarrow FR\left(m\right), k \in \{i, ii, \ldots, v\}$ and $m \in \{i, ii, \ldots, xvii\}$. Thus we see that the property (regular $\Rightarrow R_1$) is not true, in general, for fts. □

References

 http://dx.doi.org/10.1016/S0019-9958(65)90241-X

 http://dx.doi.org/10.1016/0022-247X(68)90057-7

 http://dx.doi.org/10.1016/0022-247X(76)90029-9

 http://dx.doi.org/10.1016/0165-0114(80)90007-X

 http://dx.doi.org/10.1016/0022-247X(87)90147-8

 http://dx.doi.org/10.1016/0022-247X(88)90116-3
 http://dx.doi.org/10.1016/0165-0114(90)90022-X
 http://dx.doi.org/10.1016/0165-0114(90)90103-D
 http://dx.doi.org/10.1016/0165-0114(92)90207-K
 http://dx.doi.org/10.1016/0165-0114(86)90018-7