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Abstract 

The present article deals with variable viscosity on the peristaltic transport of bile in an 

inclined duct under the action of slip boundary conditions. The wall geometry is described 

by the sinusoidal wave propagating in the axial direction with different amplitude and with 

constant speed. The flow of fluid is examined in a wave frame of reference, moving with the 

velocity of the wave.  Mathematical modeling of the problem includes equations of motion 

and continuity. The fluid flow is investigated by converting the equations into a non-

dimensionalized form simplified considering long wavelength and low Reynolds number 

approximation. The analytic expressions for axial velocity, pressure gradient, and pressure 

rise over a single wavelength cycle are obtained. The impact of various parameters such as 

slip parameter, viscosity parameter, angle of inclination, gravity parameter and amplitude 

ratio on axial velocity, pressure gradient and pressure rise are discussed in detail by plotting 

graphs in MATLAB R2018b software. In this article, a comparison of linear and nonlinear 

variation of viscosity of bile has been made. It is concluded that velocity and pressure rise is 

more in case linear variation of viscosity, whereas more pressure gradient is required in case 

of nonlinear variation of viscosity. 

Keywords: Peristaltic motion; Variable viscosity; Knudsen number; Inclined channel. 

© 2021 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.  
doi: http://dx.doi.org/10.3329/jsr.v13i3.52487                 J. Sci. Res. 13 (3), 821-832 (2021) 

1.   Introduction 

Bile is one of the bio-fluids in the human body. Peristaltic plays an important role in bile 

transportation from the gallbladder to the first part of the duodenum, i.e., the small 

intestine. The peristaltic word refers to the wavy (i.e. the contraction and expansion) of 

the walls and a tube-like structure that contains fluid. Peristaltic is an important factor of 

fluid for transporting it in many biological systems such as smooth muscle tubes, the bile 

duct, the ureter, swallowing of food through the esophagus, stomach and intestine. 

Peristaltic waves can be small, long, continuous depending upon the wall of the organ. 

Nowadays, many artificial mechanical devices are developed on the basis of the principle 

of peristaltic pumping for transporting fluid, for example, blood pump machine, dialysis 
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machine, heart-lung machine, etc. Previously many authors have studied peristaltic 

motion using theoretical, experimental and numerical approaches. Many theoretical 

studies have been done on peristaltic transport of various physiological fluids to analyze 

the behavior of fluid in different conditions using analytical, computational and 

experimental techniques. The analysis was restricted to examine small peristaltic wave 

amplitude and the assumption that fluid is free. The first research on the peristaltic 

transport of viscous fluid was presented by Latham [1]. Thereafter, many authors devoted 

their studies toward the peristaltic motion of the fluid. The influence of viscosity variation 

on the peristaltic motion of a Newtonian fluid through an asymmetric tube is studied by 

Hayat and Ali [2] and the study reveals that wave amplitude is also affected by peristaltic 

flow with the mean flow parameter. Muthu et al. [3] presented a mathematical model for 

the peristaltic motion of micropolar fluid in circular cylindrical elastic wall tubes under 

the effect of wall properties; the model is solved using the perturbation method for small 

values of amplitude ratio. Elmaboud et al. [4] theoretically examined the peristaltic 

transport of incompressible Newtonian fluid with variable viscosity in a finite length tube; 

perturbation technique is taken out to obtain results. Akbar et al. [5] analyzed the impact 

of heat transfer with partial slip-on Williamson fluid in an inclined channel. Kavitha et al. 

[6] proposed a model for peristaltic flow of Jeffrey fluid in contact with Newtonian fluid 

through an inclined asymmetric channel under the assumption of long wavelength and low 

Reynolds number approximation. Tanveer et al. [7] explored the study of variable 

viscosity of peristaltic flow of Sisko fluid in a curved channel with wall slip condition. 

Khan et al. [8] analyzed the peristaltic transport of an incompressible non-Newtonian 

fluid through a porous medium in an inclined finite length tube with slip boundary 

conditions.  

 Bile is one of the biofluids produced continuously by the liver responsible for 

emulsifying fat (lipids) in the duodenum (i.e., the small intestine). The daily secreted 

amount of bile in the human biliary system is approximately one liter. The biliary system 

consists of the liver gallbladder, biliary ducts (common bile duct, hepatic duct, and cystic 

duct) and the structure of sphincters. Biliary ducts are the medium of transportation of bile 

in the biliary system. The gallbladder is a pear-shaped organ located directly below the 

liver and regulates the bile flow. Bile plays an essential role in absorbing protein, vitamin 

D, E, K and A that are soluble in lipids. 

 There are only a few papers devoted to the rheological properties of bile flow 

modeling in different conditions of the biliary system using the analytical, computational 

and experimental method without considering the peristaltic motion.  Gottschalk and 

Lochner [9] examined 33 samples and reported that post-operative T-tube bile is Maxwell 

fluid. Atabi et al. [10] investigated the flow of bile in the patient-specific cystic duct using 

an experimental approach and revealed that the presence of gallstones might lead to 

increase resistance. They also compared clinical and CFD (Computational Fluid 

Dynamics) resulted of bile in the human cystic duct and showed CFD is a relevant 

mechanism to investigate the function of the biliary system [11].  Kuchumov et al. [12] 

presented an experimental investigation and CFD simulation of the non-Newtonian flow 
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of pathological bile in the biliary system and it was observed that at high shear stress, 

pathological bile behaves like a Newtonian fluid. Luo et al. [13] worked to understand the 

biomechanical behavior of the human biliary system. Ooi et al. [14] studied bile flow in 

the human cystic duct and found a great influence of valve of heister on the resistance to 

bile flow. Kuchumov et al. [15] presented a peristaltic flow of bile as Carreau’s fluid in 

the stenosed duct. They also presented a model for pathological bile flow in the major 

duodenal papilla duct with stone and it was shown that pathological bile behaves like a 

non-Newtonian fluid [16]. Kuchumov [17] developed a model for peristaltic lithogenic 

bile flow through a finite length tapered duct in the presence of papillary stenosis. Maiti 

and Misra [18] put forward a mathematical model for the peristaltic motion of a fluid in a 

porous channel as an application to bile flow in a pathological state and concluded that in 

the presence of gallstone, bile velocity increases as the porosity parameter increases. 

Gujral and Singh [19] analyzed the flow parameters of blood in the presence of 

overlapping stenosis while considering the axial variation of viscosity using a power-law 

non-Newtonian model. They also compared linear and quadratic variations of viscosity. 

Peristaltic transport of Ellis fluid in a vertical channel with slip conditions is studied by 

Goud et al. [20]. Mahmood et al. [21] worked on the peristaltic motion of a couple of 

stress fluids while considering lubrication effects. 

 The purpose of this article is to present a mathematical model that can be considered 

as an application of bile flow in a duct. Peristaltic transport of Newtonian fluid in an 

inclined duct under the impact of variable viscosity with slip boundary conditions has 

been investigated. The governing equations of motion and continuity are solved using 

relevant boundary conditions and simplified by long wavelength and low Reynolds 

number approximation. Analytical expressions of axial velocity, pressure gradient and 

pressure rise are obtained for small values of viscosity parameter and analyzed by plotting 

in MATLAB R2018b software. The article is organized as follows. Section 2 and section 

3 contain mathematical formulation and solution of the problem. Section 4 relates results 

and discussion and concluding remarks are presented in section 5. The aim of this article 

is to study the role of fluid dynamics in the human biliary system. From this article, it is 

expected that obtained results represented here will serve as a good theoretical model 

which can be used to understand the flow mechanism of peristaltic transport of bile in the 

human biliary system for a real-world problem.  

 

Nomenclature 

( ̅  ̅)       Cartesian co-ordinate in fixed wave frame 

( ̅  ̅)       velocity components along with  ̅ and  ̅ directions 

(     )     cartesian co-ordinate in a wave frame of reference 

(     )     velocity components along    and   directions 

                 wave speed 

                fluid pressure 

                acceleration due to gravity 

               Reynolds number 
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2.  Mathematical Formulation 

 

Let us consider the peristaltic transport of incompressible Newtonian fluid (Bile) with 

variable viscosity and slip property in the two-dimensional inclined symmetric channel 

(duct). The wall geometry is described as the wavy motion of a fluid (Bile) along the wall. 

The wavelength is comparable with the channel (duct) length; thus, the wavenumber is 

small and the Reynolds number is negligible.  

The wall geometry is defined as follow [6] 

 ̅( ̅  ̅)        
  

 
( ̅    ̅)        (1) 

where   is the amplitude of the peristaltic wave,   is the wavelength,   is wave velocity,   

is an inlet radius,  ̅ is time and ( ̅  ̅) is the cartesian co-ordinate in a fixed wave frame. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Physical sketch of the inclined duct. 

 

The governing equations of motion are [22] 
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               velocity slip parameter 

                Reynolds model viscosity parameter 

                angle of inclination 

                wave number 

                gravity parameter 

                wavelength 

 ̅               variable viscosity 

               constant viscosity 

                density of fluid 
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Here we introduce a wave frame of reference (     )  moving with the velocity  , where 

the motion becomes independent of time (t).  

The transformation from the fixed wave frame ( ̅  ̅)  to the wave frame of reference 

(     ) is given by  

    ̅         ̅     ̅        ̅     ̅  (5) 

Where             ̅  ̅  are the velocity components in the fixed wave frame and wave 

frame of reference, respectively. 

Now let us consider the following non-dimensional variables. 
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Where    is the constant viscosity and   is the wavenumber. 

Using equation (6), equations (2) – (4) converted into  
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Where   and    are the non-dimensional parameters, called wave number and Reynolds 

number respectively and are given by   

   
 

 
    

   

  
  (10) 

Considering long wavelength (   ) and low Reynolds number (    ), equations (8) 

and (9) becomes 

  

  
        

 

  
[  ( )

  

  
] (11) 

  

  
    (12) 

It is observed from equation (12),   is not a function of  , therefore equation (11) takes 

the form 

  

  
        

 

  
[  ( )

  

  
] (13) 

For the present article, the dimensionless variation of viscosity is taken in the form of  

 ( )       where (   ). where   is the Reynolds model viscosity parameter [22]. 
  

  
        

 

  
[     

  

  
] (14) 

Dimensionless boundary conditions for the velocity are 
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               (15) 

     
  

  
                                                                                     (16) 

Where    is velocity slip parameter, called Knudsen number. 

The dimensionless volume flow rate in wave frame of reference is given by 

  ∫    
 

 
  (17) 

The dimensionless instantaneous flux in the fixed wave frame is  

 (   )  ∫ (   )  
 

 
      (18) 

The time-average flux   over one wave period of peristaltic wave is given by 

  
 

 
∫    
 

 
 ∫ (   )  

 

 
      (19) 

 

3.  Solution of the Problem  

 

In direction to understand the effect of variable viscosity on peristaltic transport of bile, 

two cases are taken into account 

 

Case 1:  Linear variation of viscosity 

The dimensionless variation of viscosity is taken in the form of   ( )       where 

(   )  

  

  
        

 

  
[(     )

  

  
] (20) 

Solving equation (20) with the respective boundary conditions (15) and (16), we obtain 
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       ) [
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] (21) 

and the volume flow rate   is given by 
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From equation (22), we obtain 
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Pressure rise per wavelength can be written by 
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Case 2: Nonlinear variation of viscosity 

The dimensionless variation of viscosity is taken in the form of   ( )       
    

  
 

where (   )  
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Solving equation (25) with the respective boundary conditions (15) and (16), we obtain 
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and the volume flow rate   is given by 
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From equation (27), we obtain 
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Pressure rise per wavelength can be written by 
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4. Results and Discussion 

 

This section is devoted to analyze the influence of various parameters, namely velocity 

slip parameter   , viscosity parameter  , angle of inclination  , gravity parameter   and 

amplitude ratio   on the derived distributions axial velocity  , pressure gradient 
  

  
 and 

pressure rise    for fluid (bile). Velocity profiles are displayed from graphs 2(a)-2(d) for 

different values of effecting parameters of the problem velocity slip parameter   , 

viscosity parameter  , angle of inclination   and gravity parameter  , respectively. These 

Figs. represent the relation between axial velocity   and the axial distance  . It is also 

found in all plotted graphs that bile velocity is more in the case of linear variation of 

viscosity than the nonlinear variation of viscosity. Fig. 2(a) is constructed to see the 

deviation of axial velocity for distinct values of   . Velocity slip parameter plays an 

important role in the peristaltic motion of the fluid. It is cleared from figure velocity 

distribution close the wall are not similar in view of slip parameter. Velocity is increased 

on increasing slip parameters. Fig. 2(b) shows the impact of   on the bile velocity and it is 

seen that increasing the value of   has a tendency to boost the velocity as rising   makes 

fluid less viscous. Fig. 2(c) reveals that in case of no inclination (   ) bile velocity is 

minimum and as duct comes under inclined position, velocity increases. Due to the 

consideration of inclined duct, there would be impact of gravity parameter   on the 

velocity profile so it is obtained from Fig. 2(d) on increasing the magnitude of  , bile 

velocity also increases. 
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Fig. 2. (a) Plot of velocity   with   for different values of    with         
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(b) plot of velocity   with   for different values of   with          
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Fig. 2. (c) Plot of velocity   with   for different values of   with                 
             and (d) plot of velocity   with   for different values of   with          
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Fig. 3. (a) Plot of pressure gradient 
  

  
 with   for different values of    with         

 

 
   

             and (b) plot of pressure gradient 
  

  
 with   for different values of   with    

      
 

 
               . 
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Fig. 3. (c) Plot of pressure gradient 
  

  
 with   for different values of   with                 

             and (d) plot of pressure gradient 
  

  
 with   for different values of   with    
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Fig. 3. (e) Plot of pressure gradient 
  

  
 with   for different values of   with                

 

 
          

 

 The deviation of the pressure gradient 
  

  
 of bile for different values of angle of inclination 

is plotted in Fig. 3(c). It is admitted that the pressure gradient increases with increasing   as 

under inclined position velocity increases; hence more pressure gradient is required to maintain 

the flow throughout the duct. Fig. 3(d) shows increasing gravity parameter   increase pressure 

gradient. The impact of amplitude ratio   is described in Fig. 3(e). Since the peristaltic motion 

is taking place, it is observed that the magnitude of the pressure gradient is increased on 

increasing  . 

 The pressure rise     is calculated in terms of time-average flux  , the correlation 

between pressure rises     and time-average flux     in a wave frame is displayed from Fig. 

4(a-e) for different parameters of the problem angle of inclination  , viscosity parameter  , 

gravity parameter  , velocity slip parameter    and amplitude ratio  . All plotted graphs 

represent the linear relationship between pressure rise    and time-average flux  . It is also 

observed that pressure rise is more in the case of linear variation of viscosity. The pumping 

phenomenon can be classified into three regions, where the deviation in pressure rise is carried 
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out. The region where      is known as the pumping region and is also known as positive 

pumping for    . The region where      is known as the co-pumping region, and  

     is known as the pumping free region. Fig. 4(a) presents the relationship between 

pressure rise    and given flux   for different values of   , it is noticed from here on varying 

   in ascending order, required pressure rise     also increases for the pump to work. Fig. 

4(b) reveals the nature of pressure rise    with time-average flux   for different values of 

viscosity parameter  , it shows pressure rise    increases with increasing  . It is observed 

from Fig. 4(c) for larger the inclination, the higher-pressure rise    is required for pumping for 

given flux  . The variation in pressure rises with average flux for   is plotted in Fig. 4(d), it is 

found for larger the gravity parameter  , the higher-pressure rise works for pumping, it can be 

seen the increment in pressure rise    for given flux   with increasing  , also for given    ,    

increases on increasing   . Fig. 4(e) deals with pressure rise    for given flux   for  , it is 

noticed from here on increasing   required pressure rise    also rises for the pump to work. 
 

 

Fig. 4. (a) Plot of pressure rise    with   for different values of    with         
 

 
   

             and (b) plot of pressure rising    with   for different values of   with     

      
 

 
               . 

 
 

Fig. 4. (c) Plot of pressure rise    with   for different values of   with                 

             and (d) plot of pressure rise    with   for different values of  with          

      
 

 
            . 

 

(a)
(b)

(c) (d)
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Fig. 4. (e) Plot of pressure rise    with   for different values of   with   
 

 
          

           .  

 

5. Conclusion 

 

The present article is designed to analyze the influence of peristaltic transport on bile flow 

in an inclined duct with variable viscosity and slip boundary conditions. Governing 

equations of motion have been simplified using long wavelength and low Reynolds 

number approximation. Closed-form analytic expressions are constructed for axial 

velocity, pressure gradient and pressure rise. The influence of various parameters on axial 

velocity, pressure gradient and pressure rise are drawn with MATLAB R2018b software. 

This article has a physical significance because, in a diseased state, bile thickness 

increases and bile becomes more viscous, leading to a change in bile viscosity. The 

following points are made to summarize the study 

 It is clear from the graphs in the case of nonlinear variation of viscosity, less velocity 

is noted down. 

 Bile velocity increases on increasing inclination parameter, viscosity parameter, 

gravity parameter and velocity slip parameter. 

 Graphs show that in the case of nonlinear variation of viscosity, more pressure 

gradient is essential to flow the bile throughout the duct.  

 It is possible to boost pressure rise    for all effecting parameters of the model. 
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