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Abstract 

 

Sandor introduced a new Smarandache-type function, denoted by SS(n), and is called the 

Sandor-Smarandache function. When n is an odd (positive) integer, then SS(n) has a very 

simple form, as has been derived by Sandor himself. However, when n is even, then the 

form of SS(n) is not simple, and remains an open problem. This paper finds SS(n) for some 

special cases of n. Particular attention is given to values of the general forms SS(2mp), 

SS(6mp), SS(60mp) and SS(420mp), where m is any (positive) integer and p is an odd 

prime. Some particular cases have been treated in detail. In Section 4, some remarks are 

observed. 
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1.   Introduction 

 

F. Smarandache is a Romanian-American mathematician, who, in late nineteen seventies, 

raised some interesting problems from a wide and diverse field of mathematics, and are 

commonly known as the Smarandache notions. Notable among them is the Smarandache 

function, which has been studied extensively by the mathematicians and number theorists 

throughout the world. The characteristic of the function is that it is not a traditional 

arithmetic function of number theory. Since then more arithmetic functions of 

Smarandache-type appeared in literature. Possibly, the latest Smarandache-type arithmetic 

function is the Sandor-Smarandache function, posed by Sandor [1] in 2001, and would be 

denoted by SS(n). For a long time, the function remained in oblivion. As far as we know, 

the first systematic study of the function was made by Majumdar [2].  

The Sandor-Smarandache function, SS(n), is defined as follows: 

( ) = max  : 1 2,  divides 
n

SS n k k n n ,
k

  
    

  

 
n

 


 
3, 
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where C(n, k)
 
 !

! (   )!
n n
k k n k
     

 are the binomial coefficients, and by convention,  

SS(1)
 
=

 
1, SS(2)

 
=

 
1, SS(3)

 
=

 
1, SS(4)

 
=

 
1, SS(6)

 
=

 
1. 

The following result is due to Sandor [1]. 

Lemma 1.1: If n (
 


 
3) is an odd integer, then SS(n)

 
=

 
n

 
–

 
2. 

Corollary 1.1: SS(p)
 
=

 
p

 
–

 
2 for any prime p

 


 
3. 

Proof: is trivial, and is left as an exercise for the reader. 

Corollary 1.2: For any two odd integers m and n, SS(mn)
 
=

 
mn

 
–

 
2. 

Corollary 1.3: For any odd integer n, SS(n
m
)

 
=

 
n

m 
–

 
2 for any integer m

 


 
1. 

Sandor [1] leaves the case when n is even as a “difficult problem”. This paper 

considers this case in Section 3, where SS(n) for some particular cases is derived. In 

Section 2, some background material is given that would be needed later. The main results 

of the paper are given in Section 3, where the explicit expressions of SS(2mp), SS(6mp), 

SS(60mp) and SS(420mp) are derived, where m is a positive integer and p is an odd prime. 

Some remarks are mentioned in the Section 4. Some concluding remarks are made in final 

Section 5. 

 

2. Background Material 

 

In finding the expressions of SS(n) for different forms of n in the next section, we would 

frequently encounter the Diophantine equation of the form ax
 
+

 
by

 
=

 
c. In this context, 

Lemma 2.1 is relevant. 

Lemma 2.1: The Diophantine equation ax
 
+

 
by

 
=

 
c has an (integer) solution if and only if 

c is divisible by d
 


 
(a,

 
b). Moreover, if (x0, y0) is a solution, then there are infinite number 

of solutions, given parametrically by x
 
=

 
x0

 
+ ( )b t

d
, y

 
=

 
y0

 
+ ( )a t

d
  

for any integer t. 

Proof: See, for example, Gioia [3]. 

 

3. Main Results 

 

The following results are found. 

Lemma 3.1: Let n
 
=

 
2m, where m (

 


 
4) is an integer, not divisible by 3. Then,  

SS(n)
 
=

 
n – 3. 

Proof: Consider the expression 

C(n, n – 3) 
2 (2   1)(2   2) 2 (2   1)(   1)

2×3 3
m m m m m m

.
   

  

Here, since m is not divisible by 3, one of m
 
–

 
1 and 2m

 
–

 
1 must be divisible by 3. 

Corollary 3.1: For any even integer n, not divisible by 3, SS(n
m
)
 
=

 
n

m 
–

 
3 for any integer 

m1. 

Proof: follows readily from Lemma 3.1. 

Lemma 3.2: For any prime p
 
 5, SS(2mp)

 
=

 
2mp

 
–

 
3 for any integer m  3. 

Proof: Considering the expression 

C(2mp, 2mp
 
–

 
3)

 


2 (2   1)(2   2) 2 (2   1)(   1)
2×3 3

mp mp mp mp mp mp
,

   
  
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the result follows, since one of 2mp
 
–

 
1 and mp

 
–

 
1 is divisible by 3. 

Note that, Lemma 3.2 above holds when m
 
=

 
2, p

 
=

 
2.  

The case when n is a multiple of 3 is considered; more precisely, we consider the case 

of the function of the form SS(6m), where m
 


 
1 is an integer. From the expression 

(6   1)(6   2) (6   1)(3   1)
6 6

3! 3
m m m m

m m ,
   

  

it is clear that SS(6m)
 


 
6m

 
–

 
4. We now prove the following result. 

Lemma 3.3: Let n
 
=

 
6m, m

 


 
1. Then, for any integer s

 


 
0, 

(1) SS(n)
 
=

 
n

 
–

 
4, if m

 
=

 
4s

 
+

 
3,  

(2) SS(n)
 
=

 
n

 
–

 
5, if m is any one of the four forms (for some integers  


 
0,  


 
1,  


 
0, 

 
2): 

m
 
=

 
2(5 

+
 
4); m

 
=

 
10 

+
 
3,  


 
4s; m

 
=

 
2(5 

+
 
3); m

 
=

 
10 

+
 
1,  


 
2s+1. 

Proof: To prove part (1), consider the simplified expression below. 

C(6m, 6m
 
–

 
4)

 


(6   1)(3   1)(2   1)
6 .

4
[ ]m m m

m
  

 

Now, in order that the numerator of the term inside the square bracket is divisible by 4, 

3m–1 must be divisible by 4, that is, the Diophantine equation 

3m
 
=

 
4a

 
+

 
1 for some integer a (

 


 
1), 

whose solution is m = 4s + 3, s  0 is to be solved. Thus, if m
 
=

 
4s

 
+

 
3, then SS(n)

 
=

 
n

 
–

 
4. 

To prove part (2), let m
 


 
4s

 
+

 
3, and the expression which is reduced as follows: 

C(6m, 6m
 
–

 
5)

 


(6   1)(3   1)(2   1)(3   2)
6

2×5
.[ ]m m m m

m
   

 

Here, 6m
 
–

 
1 and 2m

 
–

 
1 are odd, and only one of the two numbers 3m

 
–

 
1 and 3m

 
–

 
2 is 

even. Moreover, m should be such that, one of 6m
 
–

 
1 and 2m

 
–

 
1 is divisible by 5. Thus, 

there are four possibilities, and consequently, four sets of equations, namely,  

(1) 2m
 
=

 
5a

 
+

 
1 and 3m

 
=

 
2b

 
+

 
2 (for some integers a

 


 
1 and b

 


 
1),  

(2) 2m
 
=

 
5a

 
+

 
1 and 3m

 
=

 
2b

 
+

 
1 (for some integers a

 


 
1 and b

 


 
1), 

(3) 6m
 
=

 
5a

 
+

 
1 and 3m

 
=

 
2b

 
+

 
2 (for some integers a

 


 
1 and b

 


 
1), 

(4) 6m
 
=

 
5a

 
+

 
1 and 3m

 
=

 
2b

 
+

 
1 (for some integers a

 


 
1 and b

 


 
1), 

are to be solved with respective solutions  

m
 
=

 
2(5 

+
 
4); m

 
=

 
10 

+
 
3,  


 
4s; m

 
=

 
2(5 

+
 
3); m

 
=

 
10 

+
 
1, 

where  


 
0,  


 
1,  


 
0,  


 
2 are integers with  


 
2s

 
+

 
1. 

For example, part (1) of Lemma 3.3 for m = 3 shows that 18 divides 17 16 1518 .
2×3×4

( )   

Thus, SS(18)
 
=

 
14. Similarly, SS(42)

 
=

 
38. Part (2) of Lemma 3.3 provides the following 

values: 

SS(48)
 
=

 
43, SS(108)

 
=

 
103, SS(168)

 
=

 
163, SS(228)

 
=

 
223, SS(78)

 
=

 
73, SS(198)

 
=

 
193, 

SS(36)
 
=

 
31, SS(96)

 
=

 
91, SS(156)

 
=

 
151, SS(216)

 
=

 
211, SS(126)

 
=

 
121, SS(246)

 
=

 
241. 

Note that, part (2) of Lemma 3.3 applies when m
 


 
4s

 
+

 
3.   

The two lemmas below give expressions of SS(6mp) under certain conditions.  

Lemma 3.4: Let p be a prime and m (
 


 
1) be an integer. Let p and m be such that one of 

them is of the form 4a
 
+

 
1, and the other is of the form 4b

 
+

 
3 (a

 


 
1, b

 


 
1). Then, 

SS(6mp)
 
=

 
6mp

 
–

 
4. 

Proof: Consider the expression 
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C(6mp, 6mp
 
–

 
4)

 


(6   1)(3   1)(2   1)
6

4
.[ ]mp mp mp

mp
  

 

Now, to prove the lemma, we have to find the condition that 4 divides 3mp – 1, that is 

3mp
 
– 1

 
=

 
4s for some integer s

 


 
1. 

Now, if m
 
=

 
4a

 
+ 1 (for some integer a

 


 
1), then 

3mp
 
– 1

 
=

 
3(4a

 
+

 
1)p

 
–

 
1

 
=

 
12ap

 
+

 
(3p

 
–

 
1), 

which is divisible by 4 if 4 divides 3p
 
–

 
1, giving rise to the Diophantine equation 

3p
 
–

 
1

 
=

 
4x for some integer x

 


 
1. 

The solution of the above equation is p
 
=

 
4b

 
+

 
3, b

 


 
1 being an integer. 

Next, let m
 
=

 
4b

 
+ 3 (for some integer b

 


 
1); then 

3mp
 
– 1

 
=

 
3(4b

 
+

 
3)p

 
–

 
1

 
=

 
12bp

 
+

 
(9p

 
–

 
1), 

which is divisible by 4 if 4 divides 9p
 
–

 
1. Thus, a Diophantine equation is formed as 

follows: 

9p
 
–

 
1

 
=

 
4y for some integer y

 


 
1. 

The solution of the above equation is p
 
=

 
4a

 
+

 
1, a

 


 
1 being an integer. 

All these complete the proof of the lemma. 

To illustrate Lemma 3.4, let m
 
=

 
5 (which is of the form 4a

 
+

 
1) and p

 
=

 
3 (which is of 

the form 4b
 
+

 
3). Then, SS(90)

 
=

 
86. Similarly, with m

 
=

 
5 and p

 
=

 
7, it is found that       

SS(210)
 
=

 
206. Again, with m = 3 and p = 13, we get SS(234) = 230. And with m = 7 and   

p
 
=

 
13, we get SS(546)

 
=

 
542. The example shows that Lemma 3.4 holds true even when   

a
 
=

 
0 and b

 
=

 
0. 

Lemma 3.5: Let p (
 


 
3) be a prime with p

 


 
5, and m (

 


 
1) be an integer such that the 

condition of Lemma 3.4 is not satisfied, and m is not a multiple of 5. Then, 

SS(6mp)
 
=

 
6mp

 
–

 
5. 

Proof: We start with the simplified form  

C(6mp, 6mp
 
–

 
5)

 


(6   1)(3   1)(2   1)(3   2)
6

2×5
.[ ]mp mp mp mp

mp
   

 

Now, one of 3mp
 
–

 
1 and 3mp

 
–

 
2 is even, and one of the four factors, namely, 6mp – 1, 

3mp – 1, 2mp – 1 and 3mp – 2, is divisible by 5 (since mp is not divisible by 5). 

Some consequences of Lemmas 3.2
 
–

 
3.5 are given below. 

Corollary 3.2: Let p
 


 
5 be a prime. Then,  

6 4, 4 3,  0
(6 )

6 5, 4 1,  3

p if p s s
SS p

p if p s s

   
 

   
 

Proof: The first part follows from Lemma 3.4. Now, with m
 
=

 
1, the condition in Lemma 

3.5 is satisfied if and only if p
 
=

 
4s

 
+

 
1. Thus, the second part also follows. 

Corollary 3.3: SS(12p)
 
=

 
12p

 
–

 
5 for any prime p

 


 
5. 

Proof: follows readily from Lemma 3.5. 

Corollary 3.4: Let p
 


 
5 be a prime. Then,  

6 4  4 1  0
(18 )

6 5              

p , if p s , s
SS p

p , otherwise

   
 


 

Proof: The proof follows from Lemma 3.4, and Lemma 3.5. 

Corollary 3.5: SS(24p)
 
=

 
24p

 
–

 
5 for any prime p

 


 
5. 
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Proof: follows immediately from Lemma 3.5. 

Now, the case when m
 
=

 
5, that is, the case of SS(30p) is considered. It can easily be 

verified that SS(30p)
 


 
30p

 
–

 
3. But the following result is found. 

Corollary 3.6: SS(30p)
 
=

 
30p

 
–

 
4, if the prime p is of the form p

 
=

 
4s

 
+

 
3, s

 


 
0. 

Proof: follows from Lemma 3.4. 

A few examples are given to demonstrate the results of Corollary 3.2
 
–

 
Corollary 3.6: 

SS(42)
 
=

 
38, SS(78)

 
=

 
73 (Corollary 3.2), SS(36)

 
=

 
31, SS(84)

 
=

 
79 (Corollary 3.3),   

SS(198)
 
=

 
193 (Corollary 3.4), SS(72)

 
=

 
67, SS(168)

 
=

 
163 (Corollary 3.5), and from 

Corollary 3.6, SS(90)
 
=

 
86, SS(330)

 
=

 
326. Note that Corollary 3.6 is valid for s

 
=

 
0. 

Lemma 3.6: SS(30p)
 


 
30p

 
–

 
5 for any prime p. 

Proof: Consider the expression 

C(30p, 30p
 
–

 
5)

 


(30   1)(15   1)(10   1)(15   2)
30

2×5
.[ ]p p p p

p
   

 

Noting that none of the four factors in the numerator inside the square bracket is divisible 

by 5, the result follows. 

Lemma 3.7: SS(30p)
 


 
30p

 
–

 
6 for any prime p. 

Proof: From the expression 

C(30p, 30p
 
–

 
6)

 


(30   1)(15   1)(10   1)(15   2)(6   1)
30

4×3
,[ ]p p p p p

p
    

 

the result follows, since neither 15p
 
–

 
2 nor 6p

 
–

 
1 is divisible by 3. 

Lemma 3.8: SS(30p)
 
=

 
30p

 
–

 
7, if the prime p is of the form p

 
=

 
4s

 
+

 
1, s

 


 
1.  

Proof: Consider the expression 

C(30p, 30p
 
–

 
7)=

(30   1)(15   1)(10   1)(15   2)(6   1)(5   1)
30

2×7
.[ ]p p p p p p

p
     

 

Now, one of 15p
 
–

 
1 and 15p

 
–

 
2 is even. Thus, the term inside the square bracket on the 

right is an integer. 

Now, the attention is confined to the function SS(60p), where p is a prime. 

Lemma 3.9: for any prime p, (1) SS(60p)
 


 
60p

 
–

 
4, (2) SS(60p)

 


 
60p

 
–

 
5. 

Proof: Part (1) follows from Lemma 3.4. The proof of part (2) is similar to that of Lemma 

3.6, and is omitted here. 

Lemma 3.10: SS(60p)
 
=

 
60p

 
–

 
6, if the prime p is of the form p

 
=

 
3s

 
+

 
2, s

 


 
1. 

Proof: Consider 

C(60p, 60p
 
–

 
6)=

(60   1)(30   1)(20   1)(15   1)(12   1)
60

6
.[ ]p p p p p

p
    

 

Now, when p is an odd prime, then 15p
 
–

 
1 is even. It is thus sufficient to find the 

condition that 3 divides 20p
 
–

 
1, that is, to solve the Diophantine equation 

20p
 
=

 
3a

 
+

 
1 for some integer a

 


 
1. 

The solution of the above equation is p = 3s + 2, s  1, which is the desired condition. 

Lemma 3.11: Let p (
 


 
11) be a prime such that p

 


 
3s

 
+

 
2 for any s

 


 
1. Then,  

SS(60p)
 
=

 
60p

 
–

 
7. 

Proof: Simplfy C(60p, 60p – 7) as follows : 

C(60p, 60p – 7)
(60   1)(30   1)(20   1)(15   1)(12   1)(10   1)

60
7

[ ]p p p p p p
p

     
. 

The result is now evident from the above expression (since 7 does not divide p). 
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The following examples illustrate the results of Lemma 3.8, Lemma 3.10 and Lemma 

3.11: 

SS(150)
 
=

 
143, SS(390)

 
=

 
383, SS(510)

 
=

 
503, SS(870)

 
=

 
863. 

SS(300)
 
=

 
294, SS(780)

 
=

 
773, SS(1140)

 
=

 
1133. 

Next, we consider the case of SS(60mp). The following two lemmas are easy to prove, and 

are stated without proof. 

Lemma 3.12: For any integer m (
 


 
1) and for any prime p (

 


 
3), SS(60mp)

 


 
60mp

 
–

 
4. 

Lemma 3.13: For any integer m (
 


 
1) and for any prime p (

 


 
3), SS(60mp)

 


 
60mp

 
–

 
5. 

However, SS(60mp)
 
=

 
60mp

 
–

 
6, which is proved below. 

Lemma 3.14: Let m (
 


 
1) be an integer and p (

 


 
5) be a prime such that  

mp
 
=

 
6s

 
+

 
5 for some integer s

 


 
1.                                                                                 (3.1) 

Then,  

SS(60mp)
 
=

 
60mp

 
–

 
6. 

Proof: We consider the expression 

C(60mp, 60mp
 
–

 
6)

(60   1)(30   1)(20   1)(15   1)(12   1)
60

6
.[ ]mp mp mp mp mp

mp
    

 

Then, 3 must divide 20mp
 
–

 
1 and 2 must divide 15mp

 
–

 
1. That is, 

20mp
 
=

 
3x +

 
1, 15mp

 
=

 
2y

 
+

 
1 for some integers x (

 


 
1) and y (

 


 
1). 

From the two above Diophantine equations, we get the following one: 

9x
 
=

 
8y

 
+

 
1, 

with the solution 

x
 
=

 
8a

 
+

 
1, y

 
=

 
9b

 
+

 
1 for any integers a (

 


 
1) and b (

 


 
1). 

Therefore, 

20mp
 
=

 
3(8a

 
+

 
1)

 
+

 
1

 
=

 
4(6a

 
+

 
1), 

that is, 

5mp
 
=

 
6a

 
+

 
1, a

 


 
1. 

The solution of the above equation is mp
 
=

 
6s

 
+

 
5 (s

 


 
0 being an integer). 

The proof of Lemma 3.14 shows that, SS(60mp)
 
=

 
60mp

 
–

 
6 (for some integer m 

 
1 and 

prime p
 


 
5) if and only if mp satisfies the relationship (3.1) holds. From (3.1), we see that 

it has a solution only if m is an odd integer; moreover, for any odd integer m fixed, (3.1) 

has always a solution, which can then be solved to find p. For example, when m
 
=

 
1, the 

condition of Lemma 3.14 becomes  

p
 
=

 
6s

 
+

 
5 for some integer s

 


 
0. 

When s
 
=

 
0, p

 
=

 
5, and hence, by Lemma 3.14, SS(6015)

 
=

 
244. The next solution is       

p = 17, with SS(60117) =
 
SS(1020) =

 
1014. Other solutions are p

 
=

 
23 with       

SS(1380)
 
=

 
1374, p

 
=

 
29 with SS(1740)

 
=

 
1734, p

 
=

 
41 with SS(2460)

 
=

 
2454, and p

 
=

 
43 

with SS(2820)
 
=

 
2814. By Lemma 2.1, there is no solution of (3.1) when m

 
=

 
2, 3, 4. 

However, with m
 
=

 
5, the condition reads as  

5p
 
=

 
6s

 
+

 
5,  

which has a solution, namely, p
 
=

 
6t

 
+

 
7 (t

 


 
0 being an integer). Now, the first solution of 

the equation p
 
=

 
6t

 
+

 
7 is p

 
=

 
7 with SS(6057)

 
=

 
SS(2100)

 
=

 
2094. We find that the next 

solution is p
 
=

 
13 with SS(3900)

 
=

 
3894. With m

 
=

 
7, the condition becomes 7p

 
=

 
6s

 
+

 
5, 
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with the solution p
 
=

 
6v

 
+

 
5 (v

 


 
0 being an integer). The first few primes in this case are 

(excluding the repeating p
 
=

 
5), p

 
=

 
11, 17, 23, 29, with 

SS(4620)
 
=

 
4614, SS(7140)

 
=

 
7134, SS(9660)

 
= 9654, SS(12180)=12174. 

And when neither m nor p is a multiple of 7, and mp
 


 
6s

 
+

 
5 for any integer s

 


 
1, then 

SS(60mp)
 
=

 
60mp

 
–

 
7. 

For example, with m
 
=

 
1, the least admissible value of p is p

 
=

 
13, which gives the value   

SS(780)
 
=

 
773. Again, with m = 1 and p

 
=

 
19, we get SS(1140) = 1133; and m

 
=

 
1 and        

p
 
=

 
31 provides the function SS(1860))

 
=

 
1853. Similarly, m

 
=

 
3 and p

 
=

 
13 give SS(2340)

 

=
 
2333; m

 
=

 
3 and p

 
=

 
19 suggest SS(3420)

 
=

 
3413; and m = 3 and p

 
=

 
31 give the function 

SS(55800)
 
=

 
5573.   

Attention is now focussed to the function SS(420mp). 

The three lemmas are easy to prove, and proofs are left for the reader. 

Lemma 3.15: SS(420mp)
 


 
420mp

 
–

 
3 for any integer m (  1) and any prime p. 

Lemma 3.16: SS(420mp)
 


 
420mp

 
–

 
4 for any integer m (  1) and any prime p. 

Lemma 3.17: SS(420mp)
 


 
420mp

 
–

 
5 for any integer m (  1) and any prime p. 

Lemma 3.18: Let m (
 


 
1) be an integer and p (

 


 
5) be a prime such that  

mp
 
=

 
6s

 
+

 
5 for some integer s

 


 
1. 

Then,  

SS(420mp)
 
=

 
420mp

 
–

 
6. 

Proof: Consider the expression 

C(420mp, 420mp
 
–

 
6)=

(420   1)(210   1)(140   1)(105   1)(84   1)
420

6
.[ ]mp mp mp mp mp

mp
    

 

Now, it is required that 2 divides 105mp
 
–

 
1 and 3 divides 140mp

 
–

 
1. Thus, 

105mp
 
=

 
2x +

 
1, 140mp

 
=

 
3y

 
+

 
1 for some integers x (

 


 
1) and y (

 


 
1), 

with respective solutions 

mp
 
=

 
2a

 
+

 
1, mp

 
=

 
3b

 
+

 
2, a and b being any integers. 

Then, the combined Diophantine equation is 2a
 
=

 
3b

 
+

 
1, with the solution 

a
 
=

 
3s

 
+

 
2, s (

 


 
1). 

Therefore, finally we get mp
 
=

 
6s

 
+

 
5 (s

 


 
0 being an integer). 

In Applying Lemma 3.18, the value of mp
 
as it is can be used. Then, the following 

values are found successively: 

SS(2100)
 
=

 
2094, SS(4620)

 
=

 
4614, SS(7140)

 
=

 
7134, SS(9660)

 
=

 
9656, 

SS(12180)
 
=

 
12174, SS(17220)

 
=

 
17214, SS(19740)

 
=

 
19734. 

Lemma 3.19: SS(420mp)
 


 
420mp

 
–

 
7 for any integer m (  1) and any prime p. 

Lemma 3.20: Let m (
 


 
1) be an integer and p (

 


 
5) be a prime such that  

mp
 


 
6t

 
+

 
5 for any integer t

 


 
1. 

Then,  

SS(420mp)
 
=

 
420mp

 
–

 
8, if mp

 
=

 
8s

 
+

 
1, s

 


 
1 being an integer. 

Proof: C(420mp, 420mp – 8) may be simplified as follows : 
C(420mp, 420mp – 8) =

(420   1)(210   1)(140   1)(105   1)(84   1)(70   1)(60   1)
420

8
.[ ]mp mp mp mp mp mp mp

mp
      
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Now, in order that the term inside the square bracket is an integer, 8 must divide      

105mp – 1. Thus, 

105mp
 
=

 
8x +

 
1 for some integer x (

 


 
1), 

with the solution mp
 
=

 
8s

 
+

 
1 (for any integer s

 


 
1), which is the desired condition. 

Note that, in Lemma 3.20, two conditions are satisfied: The first condition mp  6t + 5 (for 

any integer t
 


 
1) ensures that SS(420mp)

 


 
420mp

 
–

 
6. In applying the lemma, this 

condition must be kept in mind. Lemma 3.20 gives the following values: 

SS(10500)
 
=

 
10492, SS(1360)

 
=

 
13852, SS(20580)

 
=

 
20572. 

Observe that, in Lemma 3.20, mp must be odd. In applying the lemma, the value of mp, as 

it is, may be used. 

Lemma 3.21: Let the integer m and the prime p (
 


 
5) be such that mp

 


 
6t

 
+

 
5, t

 


 
1. Then,                      

SS(420mp)
 
=

 
420mp

 
–

 
9, if mp

 
=

 
2(9s

 
+

 
10), s

 


 
1 being an integer. 

Proof: Consider the expression below: 

C(420mp, 420mp
 
–

 
9) 

=
(420   1)(210   1)(140   1)(105   1)(84   1)(70   1)(60   1)(105   2)

420
2×9

.[ ]mp mp mp mp mp mp mp mp
mp

       
 

Now, consider the case when 9 divides 140mp
 
–

 
1 and 2 divides 105mp

 
–

 
2. Thus, 

140mp
 
=

 
9x +

 
1, 105mp

 
=

 
2y

 
+

 
2 for some integers x (

 


 
1) and y (

 


 
1). 

The solutions of the above equations are 

mp
 
=

 
9a

 
+

 
2, mp

 
=

 
2b

 
+

 
2, a and b being any integers. 

Then, the combined Diophantine equation 9a
 
=

 
2b provides the solution 

a
 
=

 
2s

 
+

 
2, s (

 


 
1), 

which, finally gives, mp
 
=

 
6s

 
+

 
5 (s

 


 
0 being an integer). 

Some of the values obtained from Lemma 3.21 are: 

SS(8400)
 
=

 
8391, SS(15960)

 
=

 
15951, SS(23520)

 
=

 
23511. 

Lemma 3.22: Let the integer m and the prime p (
 


 
5) be such that mp

 
=

 
6(10s

 
+

 
9), s

 
1. 

Then, SS(420mp)
 
=

 
420mp

 
–

 
10.                    

Proof: After simplification, it is found that 

C(420mp, 420mp
 
–

 
10)

 
 

= (420   1)(210   1)(140   1)(105   1)(84   1)(70   1)(60   1)(105   2)(140   3)
420

3×4×5
.[ ]mp mp mp mp mp mp mp mp mp

mp
          

Consider the case when 3 divides 140mp
 
–

 
3, 4 divides 105mp

 
–

 
2, and 5 divides 84mp

 
–

 
1. 

Then, three Diophantine equations result as follows: 

140mp
 
=

 
3x +

 
3, 105mp

 
=

 
4y

 
+

 
2, 84mp

 
=

 
5z

 
+

 
1, 

for some integers x (
 


 
1), y (

 


 
1) and z (

 


 
1). The solutions of these equations are 

respectively 

mp
 
=

 
3a

 
+

 
3, mp

 
=

 
4b

 
+

 
2, mp

 
=

 
5c

 
+

 
4, a, b and c being any integers. 

The solution of the first two equations is a
 
=

 
4d

 
+

 
1, so that, mp

 
=

 
6(2d

 
+

 
1) (d

 


 
1 being an 

integer). This, coupled with the third equation gives 5c
 
=

 
12d

 
+

 
2, whose solution is 

c
 
=

 
12s

 
+

 
10, s (

 


 
1), 

which, finally gives mp
 
=

 
6(10s

 
+

 
9) (s

 


 
0 being an integer). 

Some of the values obtained from Lemma 3.22 are: 

SS(226800)
 
=

 
22670, SS(47880)=47870, SS(73080)=73070. 
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It may be mentioned here that, Lemma 3.18, Lemma 3.20, Lemma 3.21 and Lemma 3.22 

may be used for the values of mp specified (without actually identifying the prime). From 

Lemma 3.21 and Lemma 3.22, we see that mp is even.   

 

4. Some Remarks 

 

As has been pointed out by Sandor [1], if (n,
 
k)

 
=

 
1, then n divides C(n,

 
k), which gives a 

sufficient condition. The proof of this result depends on the fact that 
1

 
1

n nn .
kk k

   
      

 

However, the condition is not necessary. For example, though (10, 4)
 


 
1, 10 divides 

C(10,4). Also, note that, if k divides 
1

1

n

k

 
  

 then n divides 
n

.
k
 
 
 

 The following result is 

interesting. 

Lemma 4.1: Let the integers n and k (
 
<

 
n) be such that n

 
+

 
1 divides 

 + 1n
.

k
 
 
 

 Then, n
 
+

 
1 

divides 
1

n n
.

k k
   

      
  

Proof: The proof relies on the property that 
 + 1

1

n n n
.

k k k
     

           
 

For example, since 42 divides 
42

19
,

 
 
 

 it follows from Lemma 4.1 that, 42 divides 

41 41

19 18
.

   
   

   
However, in this particular example, we see that 4241 also divides   

42

19
 

 
 

41 41

19 18
.

   
   

   
 And in fact, in this case, 434241 divides 

42 41 41

18 18 19
.

     
      

     
 It 

may be mentioned here that, in this example, 41 divides each of 
41

19
 
 
 

 and 
41

;
18
 
 
 

 and 

SS(42)
 
=

 
38. Note that, though n

 
=

 
41 divides 

18

n
,

 
 
 

 n
 
+

 
1 does not divide 

1

18

n
.

 
 
 

  

Two other Smarandache type arithmetic functions are the Smarandache function, S(n), 

and the pseudo Smarandache function, Z(n), which are defined as follows: 

S(n) = min {m : n divides m!}, 

Z(n) = min {m : n divides 
(  + 1)

2
m m

}. 

Only a little is known about these two functions. Recently, a brief survey of S(n) and 

Z(n) has been done by Liu [4,5]. It is well-known that, S(n) and Z(n) are not 

multiplicative. Recall that, a function f(n) is multiplicative if and only if f(mn)
 
=

 
f(m)

 
f(n) 

whenever (m, n)
 
=

 
1. 

Let p and q be two distinct odd primes. Then, 

SS(pq)
 
=

 
pq

 
–

 
2

 


 
SS(p)

 
SS(q). 
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Thus, the Sandor-Smarandache function, like the Smarandache and the pseudo 

Smarandache functions, is not multiplicative. Since 

S(p)
 
=

 
p, Z(p)

 
=

 
p

 
–

 
1, 

it follows that each of the equations SS(n)
 
=

 
S(n)

 
+

 
2 and SS(n)

 
=

 
Z(n)

 
+

 
1 has an infinite 

number of solutions. Moreover, the equation 

SS(n)
 
+

 
S(n)

 
=

 
2

 
Z(n) 

has an infinite number of solutions, namely, n
 
=

 
p. 

It is conjectured (Muller [6]) that the equation S(n)
 
=

 
S(n

 
+

 
1) has no solution in integer 

n (though Ashbacher [7] hopes that, someday, somebody would come up with a solution). 

It has been proved by Gou and Li [8] that, the equation Z(n)
 
=

 
Z(n

 
+

 
1) has no solution. 

However, the result below can be proved. 

Proposition 4.1: The equation SS(n)
 
=

 
SS(n

 
+

 
1) has an infinite number of solutions. 

Proof: Let n be an integer of the form n
 
=

 
6m

 
+

 
1, m

 


 
1. Then, by virtue of Lemma 1.1 

and Lemma 3.2, 

SS(n)
 
=

 
n

 
–

 
2

 
=

 
SS(n

 
+

 
1). 

Lemma 4.2: The series 
=1

1
( )

n
SS n



  is divergent. 

Proof: Consider the subsequence   3
( )

p
SS p


. Since, by Corollary 2.2, SS(p)

 
=

 
p

 
–

 
2, it 

follows that (see, for example, Hardy and Wright [9]) 

=1 =1

1 1
  2( )

n n
pSS p

 


   

is divergent. Consequently, the lemma follows. 

Murthy [10] and Khairnar et al. [11] have defined the Smarandache LCM ratio 

function (of the second type), denoted by SL(n, r) as follows: 

Definition 4.1: For any integers n and r with r
 


 
n, 

[ ,   1,   2, ...,    + 1]
( , ) = ,

[1, 2, 3, ..., ]
n n n n k

SL n k
k

  
 

where [n1, n2, …, nr] is the LCM (least common multiple) of the r integers n1, n2, …, nr, 

and (n1, n2, …, nr) is their GCD (greatest common divisor). 

It is indeed interesting to observe that the two functions, SS(n), and SL(n,
 
k) are related 

through the following relationship. 

Lemma 4.3: For any integers n and k with k
 


 
n, 

( ,   1  ...,    + 1)
 = ( , ) 

(1, 2  ..., )

n n , n kn
SL n k .

k , k

  
 
 

 

Proof: Noting that 

( ,   1  ...,    + 1)
( , )

(1, 2  ..., )

n n , n k
SL n k

, k

  (   1)(   2)  (    + 1) !=
( ,   1    2      + 1) (1, 2  3   )

n n n ... n k k/
n n , n , ..., n k , , ..., k

  

  
 

the result follows. 

For example, from Lemma 4.3, 

( ,   1)
 = ( , 2) 

2 (1, 2)

n nn
SL n ,

 
 
 

 
( ,   1    2)

 = ( , 3) 
3 (1, 2, 3)

n n , nn
SL n .

  
 
 

 

Since (n, n – 1)
 
=

 
1, (1, 2)

 
=

 
1, (1, 2, 3)

 
=

 
1, the following well-known formulas are found: 
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(   1)
( , 2) = ,

2
n n

SL n
  

(   1)(   2)
   6

(  3)
(   1)(   2)   

12

n n n
, if n is odd

SL n,
n n n if n is even

,

 


 
 



  

where, in the last formula, the fact that 

1,     
( ,  1,  2)

2,   

if n is odd
n n n

if n is even


   


 

has been used. The above expressions of SL(n, 2) and SL(n, 3) match with those given by 

Majumdar [12], and Majumdar and Islam [13,14]. In applying Lemma 3.1, calculation of 

(n, n – 1, n – 2, …, n – k + 1) is needed. 

5. Conclusion 

 

This paper finds the values of the Sandor-Smarandache function SS(n) for some particular 

cases, which reveals many interesting features. It seems that the value of SS(n) depends on 

the prime factors of n. Comparison of Lemma 3.10 and Lemma 3.7 shows that SS(30p) 

and SS(60p) behave differently. In the more general case, starting from SS(2mp), it was 

gradually proceeded to find the values of SS(6mp), SS(60mp) and SS(420mp). It is shown 

that the function SS(n) is not multiplicative. Solutions of the equation SS(n)
 
+

 
S(n)

 
=

 
2Z(n) 

are also derived. An interesting result, the apparently irrelevant functions SS(n) and 

Smarandache LCM function SL(n,
 
r) are related, has been proved. It is found that, given 

any integer n, there need not exists an integer k such that SS(n)
 
=

 
n

 
–

 
k. For counter 

examples, we refer the reader to Lemma 3.6, Lemma 3.7, Lemma 3.9, Lemma 3.12, 

Lemma 3.13, and Lemmas 3.15 – 3.17. An open question may be posed as follows: 

Question 5.1: Given any integer k, is there an integer n such that SS(n)
 
=

 
n

 
–

 
k? 

The paper is concluded with an alternative definition of the Sandor-Smarandache 

function: 

( ) =  : 2 1,   { }n
SS2 n min k k n n divides ,

n k
 

     
 n

 


 
3. 

Note that, SS2(n)
 
=

 
k if and only if SS(n)

 
=

 
n – k. 
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