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Abstract 

 

The phonon dispersion curves for Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass (BMG) are 

computed employing various dielectric screenings using the simple model given by Bhatia 

and Singh. The force constants β and δ for computing the dispersion curves are calculated 

from the elastic constants i.e. bulk modulus (B) and shear modulus (G) along with the 

calculated value of force constant κe of the material of the glass for the first time. The results 

of the phonon dispersion curves show appropriate behavior in the long wavelength region in 

detail for both the longitudinal and transverse modes and give insight regarding the acoustic 

and thermal properties of the BMG. The transverse sound velocity and the longitudinal 

velocities with various dielectric screening are calculated from the dispersion curves in the 

long wavelength region. The corresponding thermodynamic property (Debye temperature) is 

calculated for different dielectric screenings. The theoretical results predicted are in a good 

agreement with the reported data in the literature for the Pt57.5Cu14.7Ni5.3P22.5 BMG and may 

be used for correlating other properties. 
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1.   Introduction 

 

Bulk metallic glasses have emerged with attractive mechanical and thermal properties 

having a wide range of technological applications [1,2]. The understanding of phonon 

dynamics and micro-structural configuration of metallic glasses is essential for 

understanding their acoustic, elastic and thermal properties [2–7]. Experimentally, neutron 

scattering has been used to study the phonon frequencies of metallic glasses [8,9]. The 

theoretically computed phonon dispersion curves both for longitudinal and transverse 

modes have also been reported by computer simulation and recursion techniques [8-13] 
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for a variety of metallic glasses. Three main theoretical approaches, namely Hubbard and 

Beeby [14], Takeno and Goda [15] and that of Bhatia and Singh [4] are widely used for 

computing phonon frequencies of metallic glasses. Pratap et al. [16] has computed phonon 

frequencies of Cu57Z43 metallic glass using both Hubbard and Beeby and that of Takeno 

and Goda approaches. Vora and Gandhi [13] have reported phonon dispersion curves of 

Pd39Ni10Cu30P21 using Takeno and Goda approach. The simple model approach by Bhatia 

and Singh [4] has been applied for computing phonon dispersion of various metallic 

glasses-Cu57Zr43 by Agarwal et al. [7], for Zr–Ni alloys by Lad and Pratap [17] and by 

Agarwal for Zr-Ti-Cu-Ni-B [10] and Cu60Zr20Hf10Ti10 [11] bulk metallic glasses (BMGs).  

Pt57.5Cu14.7Ni5.3P22.5 BMG due to its unique properties has potential industrial 

applications in electrochemical devices such as micro fuel cells, energy 

conversion/storage and sensors [18,19]. The large ductility and high fracture toughness 

properties of Pt57.5Cu14.7Ni5.3P22.5 BMG are experimentally studied by Schroers and 

Johnson [20]. Chen et al. [21,22] reported the influence of annealing temperature on the 

hardness, elastic modulus and surface morphology of Pt57.5Cu14.7Ni5.3P22.5 BMG. Similar 

studies on fracture toughness variation of the BMG under consideration were also 

reported by Ketkaew et al. [23]. However, understanding and controlling the properties of 

bulk metallic glasses in general is limited by the lack of sound theoretical understanding 

for the disordered and non-equilibrium glassy materials. 

 In this work, we compute the phonon dispersion curves of Pt57.5Cu14.7Ni5.3P22.5 BMG 

using the simple model given by Bhatia and Singh [4] employing various dielectric 

screenings. This simple model proposed by Bhatia and Singh assumes a central force, 

effective between nearest neighbours and a volume-dependent force due to conduction 

electrons. Bhatia and Singh had fixed the values of force constants δ and β using the value 

of longitudinal and transverse sound velocities along with the calculated value of force 

constant κe as no experimental data on elastic constants were available, though they have 

suggested to fix these parameters from elastic constants. Subsequent theoretical study of 

phonon dispersion employing Bhatia and Singh approach using force constant method has 

also derived the force constants values in a similar way [7,10-12]. In the study presented 

in this paper, we fix the value of force constants δ and β used in the computation of 

dispersion curves by using the value of bulk modulus (B) and shear modulus (G) of the 

BMG under consideration for the first time along with the calculated value of force 

constant κe. The dielectric screening due to conduction electrons is quite significant in the 

long wavelength region of the dispersion curves and to study the effects of various 

dielectric screenings on the dispersion curves in longitudinal mode, we employ the 

dielectric screening functions [24] due to Bhatia and Singh (BS) [4], Hartree (H), Hubbard 

(HB), Geldart and Vosko (GV), self-consistent screening due to Shaw (SCS) [25], and 

Overhauser (OH) [26]. The longitudinal sound velocities (  ) are computed for different 

dielectric screenings and the transverse sound velocity (  ) is obtained which is without 

dielectric screening from dispersion curves in the long wavelength region. The 

corresponding Debye temperature (  ) is finally obtained for various dielectric 

screenings. 
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2. Theory 

 

The equations for the longitudinal phonon frequencies (ωL) and transverse phonon 

frequencies (ωT) as given by Bhatia and Singh [4] are written as  
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here q is the momentum wave vector, a is the distance between nearest neighbours and N 

is the coordination number; β, δ and κe are force constants. β and  δ are defined in terms of 

the first and second derivatives of  inter-atomic potential W(r) at    , as 

  
   

  
*
 

 

  ( )

  
+
   

,  (3) 

  
   

  
*
 

  
(
 

 

  ( )

  
)+
   

 .      (4)  

In Eq. (1), the relevant force constant    due to the conduction electrons based on the 

Thomas–Fermi model can be written as  

 

           
    

 ⁄  ,  (5) 

where e is the electron charge,         is mean electron density and    is the ionic 

number density;   ∑       is the mean valence of the glassy system, where    and    are 

the concentration and valence of the ith constituent;    
  (      ⁄ ) is the Thomas-

Fermi screening length, where     is the Bohr radius and    (  
   )

 
 ⁄  is the Fermi 

wave number.  

The [ (   )]
  in Eq. (1) is the shape factor to take into account the cancellation effects of 

kinetic and potential energies inside the core of the ions and is of the form 
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where    [ (    )⁄ ]  ⁄  is the radius of the Wigner- Seitz sphere. 

To study the effects of various dielectric screenings on the longitudinal phonon 

dispersion curve, we employ various dielectric screenings namely Bhatia and Singh (BS), 

Hartree (H), Hubbard (HB), Geldart and Vosko (GV), self-consistent screening due to 

Shaw (SCS) and Overhauser (OH). The dielectric screening function  ( ) in Eq. (1) takes 

the following forms for various dielectric screenings.  

Bhatia and Singh [4] used as 
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where  ( ) is given by Hubbard [27] as  
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Hartree dielectric screening [24] takes the form of                                                                                                  
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The HB, GV SCS and OH dielectric screening functions [24] are given by   
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where θ is the angle between the unit vector along the displacement of the wave and the 

vector joining the atom at the origin to one of its nearest neighbours, 
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for the limiting case    ,    ;   ( )  
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  . Substituting these 

values in Eqs. (1) and (2), we have the longitudinal and transverse sound velocities 

respectively,   ( )     ⁄  and   ( )     ⁄  in low momentum region (   ) as     
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 In terms of the elastic moduli of the glassy material [4]                   
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The longitudinal sound velocities (  ) for various dielectric screenings are obtained 

from the ωL-q dispersion curves in the long wavelength region. Similarly, the transverse 

sound velocity (  ) is obtained from the ωT-q dispersion curve in the long wavelength 

region.The value of the Debye temperature (  ) is obtained using the relation [28]         
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3. Calculations 

 

The experimental values of       and   are taken from Schroers and Johnson [20] for 

Pt57.5Cu14.7Ni5.3P22.5 as 198.7x10
9 

Nm
-2

, 33.3x10
9 

Nm
-2 

and 15.02x10
3
 kgm

-3 
respectively. 

The value of    calculated using the relation       is found to be 6.876 x10
28 

m
-3

.   

Since the BMG under consideration is of FCC structure,    can be written as                                   

 

        . (23)  

                         

Substituting the value of    in Eq. (23) gives a = 2.74x10
-10 

m. The calculated value of 

mean valence of the BMG using the relation   ∑       is 2.08. The value of κe is 

calculated using Eq. (5) with        for Pt57.5Cu14.7Ni5.3P22.5 is found to be 162.198x 10
9 

Nm
-2

. The values of force constants β and δ are obtained by substituting the values of  ,   

and κe in Eqs. (18-21) taking N = 12 for FCC structure. Hence, all the values of the 

quantity in dispersion relations in Eqs. (1) and (2) are known. The parameters used for 

computing phonon dispersion curves are listed in Table 1. 

 

Table 1. Parameters used for computing phonon dispersion curves of 

Pt57.5Cu14.7Ni5.3P22.5 BMG. 

 

 

  

 

 

 

 

 

 

 

4. Results and Discussion 

 

The phonon dispersion relation in Eq. (1) is applied to Pt57.5Cu14.7Ni5.3P22.5 BMG with 

different dielectric screening functions viz. BS, H, HB, GV, SCS, and OH to get the 

longitudinal phonon frequencies. Similarly, Eq. (2) is applied to obtain the transverse 

phonon frequency which is without dielectric screening. The phonon dispersion curves for 

Pt57.5Cu14.7Ni5.3P22.5 BMG are shown in Fig. 1. From the Fig. 1, the longitudinal (ωT-q) 

and transverse (ωL-q) dispersion curves show linear dispersion curves in the long 

wavelength region. 

Pt57.5Cu14.7Ni5.3P22.5 

ρ (103 kgm-3) 15.02 

  (1028 m-3) 6.876 

κe (109 Nm-2) 152.198 

   (1010 m-1) 1.618 

   (10-10 m) 1.514 

   
  (1020 m-2) 3.893 

β (109 Nm-2) 2.313 

δ (109 Nm-2) 36.006 

z 2.08 
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Fig. 1. The transverse (T) phonon dispersion curves on the basis of Eq. (2) and longitudinal phonon 
dispersion curves due to dielectric screenings viz. BS, H, HB, GV, SCS and OH on the basis of   Eq. 
(1) for Pt57.5Cu14.7Ni5.3P22.5 BMG. 

 

As seen from Fig. 1, ωL-q dispersion curves depend on the dielectric screening 

employed. The position of the first peak for ωL-q curves is found at q = 1.2x10
10 

m
-1 

for 

BS and H form of dielectric screenings, while
 
for HB, GV, SCS and OH form of dielectric 

screenings it is found at q=1.3x10
10 

m
-1

.
 
The height of the peak is also dependent on the 

type of dielectric screenings employed. The difference in ωL values increases as q starts 

increasing and it gradually widens and becomes prominent at the first maxima (peak) of 

the curve. The peak heights of SCS, GV, HB, OH, H and BH form of dielectric screenings 

are in the ascending order. For SCS the peak height is lowest while it is the highest for BS 

form of screening. The overall difference between SCS and BS is 19.56 %. With further 

increase in q, the ωL values start decreasing and the ωL-q curves converge at the q value 

corresponding to the first minima of ωL-q curves obtained at q=2.8x10
10 

m
-1 

and it is 

independent of the dielectric screenings. Beyond this q value, ωL values are independent 

of dielectric screenings employed. The first peak position of ωT-q curve is obtained at 

q=2.0x10
10 

m
-1

 which is at higher q value than the first peak position of ωL-q curves for all 

dielectric screenings. The dispersion curve of ωT-q increases with wave number q and gets 

saturated around the first peak with a small variation. With further increase in q value, the 

damping of transverse phonons becomes prominent.  

The sound velocities of the transverse and longitudinal modes are estimated for this 

BMG in the long wavelength region (q→0) of the dispersion curves. For estimating the 

sound velocities of transverse and longitudinal modes, we have taken the data range (q = 

0.1 x10
10 

m
-1

 to q = 0.4 x10
10 

m
-1

) for all the screenings. The values of sound velocities 

estimated from the dispersion curves for the transverse (  ) and longitudinal (  ) modes 

are listed in Table 2. 
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Table 2. The longitudinal (  ) and transverse (  ) sound velocities along with Debye 

temperature (  ) for Pt57.5Cu14.7Ni5.3P22.5  BMG employing different dielectric 

screenings. 
 

Pt57.5Cu14.7Ni5.3P22.5 

Dielectric screenings    (10
5 
cms

-1
)   (10

5 
cms

-1
)   (K) 

BS 4.413 1.457 202.2 

H 4.379  202.1 

HB 4.112  201.9 

GV 3.904  201.6 

SCS 3.592  201.1 

OH 4.035  201.8 

Experimental 4.000 [20] 1.481 [20] 206 [2] 

 

The value of transverse velocity computed from the slope of the dispersion curve, 

which is without any dielectric screening in the long wavelength region is   =1.457x10
5
 

cms
-1

. The computed transverse sound velocity is 1.6 % less than the experimental value 

of 1.481x10
5
 cms

-1 
reported by Schroers and Johnson [20]. Similarly, the values of 

longitudinal velocities (  ) computed for various dielectric screening are listed in Table 2. 

The screenings due to various dielectric screening functions have an effect on the 

longitudinal sound velocity. However the values of longitudinal sound velocities 

computed from the dispersion curves are close to the experimental value of 4.000 x10
5
 

cms
-1 

[20] with the dielectric screening due to OH showing nearest to the experimental 

value. The corresponding Debye temperature,   (K) is computed using Eq. (22) by 

substituting the value of transverse sound velocity which is without dielectric screening 

and the longitudinal sound velocity values for various dielectric screenings as listed in 

Table 2. There is not much variation in the computed values of    for different dielectric 

screening function and it is very close to the reported value of 206 K [2]. 

The position of the first minimum of ωL-q curves lie where the first peak (qp) of the 

static structure factor, S(q) is predicted. The position of the first minimum of ωL-q curves 

lies at q= 2.8x10
10 

m
-1

 and is independent of the dielectric screenings. Since no 

experimental data for the static structure factor of Pt57.5Cu14.7Ni5.3P22.5 BMG is     

available, we  predicted from our theoretical phonon dispersion curves to be around         q 

= 2.8x10
10 

m
-1

. Moreover, the computed value of qp for the system under consideration is 

slightly less than    , where     = 1.618x10
10 

m
-1

 is the calculated value of the BMG as 

shown in Table 1. The ratio of        ⁄ =1.15 for this BMG is in good agreement with the 

stability of metallic glasses [29]. The structure factor provided key structural information 

on the atomic network for amorphous matters and a universal relationship exists between 

the elastic properties and the wavelength λ (i.e.     ⁄ ) [3]. Since the experimental data 

for phonon frequencies are rare and the limitation of the experimental techniques for 

describing the micro-structure of metallic glasses, it is expected that theoretical 

computation of phonon dispersion curves will give insight on understanding the structural 

information and elastic properties of metallic glasses. 
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4. Conclusion 

 

We theoretically investigated the phonon dispersion curves of Pt57.5Cu14.7Ni5.3P22.5 BMG 

employing various dielectric screenings using the Bhatia and Singh approach. In 

computing the dispersion curves we have fixed the values of force constants δ and β using 

the experimental values of bulk modulus (B) and shear modulus (G) along with the 

calculated value of force constant κe of the BMG under consideration. This method of 

fixing force constants is applied for the first time. From the computed dispersion curve, 

the acoustic and thermodynamic properties along with the position of the first peak of 

static structure factor can be predicted. The values of sound velocities and Debye 

temperature computed from the phonon dispersion curves of Pt57.5Cu14.7Ni5.3P22.5 BMG 

using this method is in good agreement with the experimental data. Thus, in view of the 

excellent agreement with the experimental data, we plead for the reliability of the results 

computed by this method and we are presently working on applying this method for 

computing phonon dispersion curves of other BMGs. 
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