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Abstract 

The purpose of this paper is to introduce Sumudu decomposition method for solving 

Fractional Bratu-type differential equation. This method is a combination of the Sumudu 

transform and Adomian decomposition method. The fractional derivative is described in the 

Caputo sense. The Sumudu decomposition method is applied to obtain approximate 

analytical solution of non-linear Fractional Bratu-type differential equation. A novel 

combination of Sumudu transform and Adomian decomposition provides approximate 

solution in the form of infinite convergent series solution. The behavior of approximate 

analytical solutions and exact solutions for different values of   are plotted graphically. The 

results acquired from Sumudu decomposition method indicates that the proposed method is 

very well founded, suitable and effective. Finally, some numerical examples are given to 

illustrate the efficiency and applicability of our method. 
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1.   Introduction 

The mathematical models of various streams of science & engineering were developed by 

using fractional order differential equations. In recent years, Fractional Calculus has been 

used in many areas such as electrical networks, engineering, viscoelasticity, 

electrochemistry of corrosion [1], control theory of dynamical systems [2], biology [3], 

chemistry [4], physics [5], material science and signal processing [6]. The various 

contents of science and engineering can be successfully modeled by linear or nonlinear 

fractional order differential equations. The concept of Fractional Calculus and its 

applications were explained by Podlubny [1] and Kilbas [2].    

 Fractional Calculus has some essential differences in comparison with integer order 

[7]. The fractional order differential equations are in general form of integer order 

differential equations. The fractional derivatives are defined for whole time domain in 

physical process, whereas the integer order derivatives are connected to the local 
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properties of a physical system at specific time. The author Saad along with other authors 

investigated different types of concepts in fractional calculus. The review of his research 

articles has been taken in brief for understanding history of fractional derivatives. The 

spectral collocation method based on the shifted Chebyshev polynomials has been applied 

for approximate solution of Korteweg–de Vries, Korteweg–de Vries–Burger’s and 

Burger’s equations with Liouville–Caputo fractional space derivatives, respectively [8]. A 

new model of fractional-order quadratic autocatalysis with linear inhibition was 

introduced by authors for its approximate solution using the power law, the exponential 

law and the Mittag-Leffler kernel [9]. The physical model called the blood ethanol 

concentration system, it can be expressed by a system of fractional differential equations 

(FDEs) has been solved by utilizing an approximate method for numerical solution. The 

authors have used the spectral collocation method based on Chebyshev approximations of 

the third-kind [10]. The approximate-analytical solutions obtained for a cancer 

chemotherapy effect model involving fractional derivatives with exponential kernel and 

with general Mittag-Leffler function. Laplace homotopy perturbation method and the 

modified homotopy analysis transform method were applied for approximate-analytical 

solutions [11]. The homotopy analysis transform method (HATM) was employed for 

solution of the time fractional order Korteweg-de Vries (KdV) and Korteweg-de Vries-

Burger’s (KdVB) equations. The HATM is a combination of the Laplace decomposition 

method (LDM) and the homotopy analysis method (HAM) [12].    

 In the literature there are various kind of integral transforms have been used in 

physics and engineering. The integral transforms were successively applied to solve the 

differential equations, simultaneous linear equations, several works on the theory and 

application of integral transforms. The names of those transforms are Laplace Transform, 

Fourier Transform, Mellin Transform, Hankel Transform and Z Transform.  

 Watugala [13] introduced a new integral transform named as Sumudu transform. He 

applied such transform for solution of ordinary differential equations in control 

engineering problems. Various properties of Sumudu transform are observed in the 

literature [14]. 

The Sumudu transform is defined over the set of functions [6]  

 A={ ( )               ( )    
 

         (  )    ,   ) } 

This is defined through definite integral by using the following formula: 

  ( )   , ( )-  
 

 
∫  

  

 
 

 
 ( )     (      )  (1)      

When the exact solution of fractional order differential equations does not exist then many 

researchers particularly focus on approximate solutions of functional equations of 

fractional order. There are various numerical methods given for differential equations of 

integer order which are extended to fractional order differential equations, such methods 

are differential transform method (DTM) [15], variational iteration method (VIM) [16], 

Adomian decomposition method (ADM) [17], Homotopy perturbation method (HPM) 
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[18], etc. This study motivated for us to focus on the solution of Bratu-type fractional 

differential equation [15]. 

    ( )      ( )                   (2)                       

  ( )    ,    ( )     

Where    represents the fractional derivative of order  ,  ( ) is unknown function 

defined on the interval [0, 1] and       and   are given constants. The numerical 

solutions of above-mentioned problem (2) have been previously calculated by ADM [19], 

RKM [20]. Further in this research area D. D. Demir and A. Zeybek obtained approximate 

solution of Fractional Bratu-type Differential Equation [FBDEs] by FDTM. In present 

paper we applied Sumudu decomposition method for approximate solution of problem (2). 

This technique has been developed and effectively used by different researchers [21-25]. 

The Adomian Decomposition method is useful for non-linear terms and Bratu-type 

fractional differential equation contain non-linear terms so as a result Sumudu 

decomposition method has given effective approximate solutions for different values of  . 

Finally, approximate solutions of present method have compared with exact solution. 

Also, we compared approximate solutions of Sumudu decomposition method [SDM] with 

approximate solutions of fractional differential transform method [FDTM] & fractional 

reproducing kernel Hilbert space method [FRKM]. The graphical representation shows 

the accuracy of the approximate and exact results.   

 This paper is divided in six sections: we have given introduction and literature review 

in section 1. We have provided some definitions of Fractional Calculus, definition of 

Sumudu transform and few properties of Sumudu transform in section 2. We have 

explained the fundamental theorems of convergence in Section 3. We have discussed 

analysis of Sumudu decomposition method in Section 4. We have solved some FBDEs for 

effectiveness of proposed method in section 5. Finally, section 6 concludes the paper. 

2. Basic of Fractional Calculus 

In this section, we introduce necessary definitions related to fractional calculus which are 

required in our present study.  

2.1. Definition [26] 

A real function  ( ),     is said to be in the space   ,    , if there exists a real 

number    , such that  ( )     ( ), where  ( )   (   ) and it is said to be in the 

space   
  iff  ( )        . 

2.2. Definition [27]  

The Riemann-Liouville fractional differential operator of order      of a function 

  ( )    and      are defined by  

   
 

 
   ( )  

 

 (   )

  

   ∫
 ( )

(   )       
 

 
;                 .    (3)   
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2.3. Definition [28]  

The fractional integral operator     in the Riemann-Liouville sense of a function 

 ( )          is defined as 

   
  ( )  

 

 ( )
∫ (   )    ( )  
 

 
            (4)    

2.4. Definition [29]  

In the fractional calculus, the Caputo’s fractional derivative is the definition which on the 

initial conditions gives most appropriate results for the initial conditions. The Caputo’s 

fractional derivative is defined by  

   
 

 
  ( )  

 

 (   )
∫

 ( )( )

(   )       
 

 
;         .                  (5) 

The Caputo’s fractional derivative definition has one advantage; this is defined on initial 

conditions in same form with those of the equations of integer order. 

Also, the Caputo’s fractional derivative can be given by  

   
   ( )        

    ( )            , 

   
   ( )  

  

    ( )       . 

2.5. Definition [30]   

The Sumudu transform  * ( )+ of the fractional derivative introduced by Caputo is given 

by 

  *   ( )+      ( )  ∑       ( )( )    
             Where  ( )   * ( )+.  (6) 

Many of special properties of the Sumudu transform are mentioned and tabulated in [30]. 

Some special properties of the Sumudu transform are as follows; 

 (i)   * +    

 (ii)   *  +      (   )         

 (iii)  * ( )   ( )+   * ( )+   * ( )+ 

3. Fundamental Theorems of Convergence 

3.1. Theorem 

A necessary condition for convergence of an infinite series ∑   
 
    is that          

 . 

3.2. Theorem 

A necessary condition for convergence of positive term series is defined follows 

(Pringsheim's Theorem). 
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Statement:  If a series ∑   
 
    of positive monotonic decreasing terms converges then 

not only      but also       as      

3.3. Taylor's theorem 

Statement: If    ,   -    is (n+1) times continuously differentiable, then there exits 

   (   ) such that  

  ( )   ( )    ( )(   )  
   ( )

 
(   )     

  ( )

  
(   )  

 (   )( ( ))

(   ) 
(  

 )(   )  

The Taylor Theorem is usually applied for a fixed point  , while the point      is used 

as an independent variable: 

  ( )   ( )    ( )(   )  
   ( )

 
(   )     

  ( )

  
(   )    ( )  

where the remainder function   ( ) is given by 

   ( )  
 (   )( ( ))

(   ) 
(   )(   ) with   (   )  

3.4. Corollary of Taylors theorem 

Let       be infinitely differentiable with Taylor polynomials    and remainders   , 

that is, for      holds  

  ( )    ( )    ( )  

If   ( )    as      for     , then the Taylor series centered at     converges on 

  to the function values  ( ), that is  ( )  ∑
  ( )

  
(   )   

    

4. Analysis of the Method [SDM] 

The fractional differential equation of the form  

    ( )   ( )   (   )   ( )                               (7) 

With initial condition  

   ( )    
  (8) 

where R is a linear bounded operator and    is a nonlinear bounded operator,  ( ) is a 

given continuous function and    ( ) is the term of the fractional order derivative. 

 In proposed article we applied same methodology of Sumudu decomposition method 

for analytical approximate series solution of (2) subject to initial conditions along with 

exclusion of linear bounded operator R and exclusion of continuous function f(x) because 

the Bratu-type differential equation does not contain linear term and function of x. 

 In this paper we will consider a class of Bratu-type differential equation of the form 

    ( )   (   )                                           (9) 
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 With initial condition  

   ( )    
 ,                                                                         (10) 

Where    is a nonlinear bounded operator and    ( ) is the term of the fractional order 

derivative (in throughout paper  ( )and  ( ) both are absent). 

The Sumudu decomposition method consists of applying the Sumudu transform first on 

both sides of (9) to give 
 

 *   ( )+   * (   )+    

By definition 2.5, 

 
 * ( )+

   
 

      * (   )+    where   ∑  ( )( )   
    

  * ( )+         * (   )+.                                                                 (11) 

The standard Sumudu decomposition method defines the solution  ( ) by the series 

  ( )  ∑   ( )
 
    (12) 

Also, the non –linear operator is decomposed as  (   )  ∑     
 
    (13) 

Where    i.e. Adomian Polynomials of    ,   ,   , …….,   that are given by: 

    
 

  

  

   
, (∑     

 
   )-                   

The first Adomian Polynomials are given by 

     (  ) 

       
 (  ) 

       
 (  )  

 

  
  

    (  ) (14) 

       
 (  )       

  (  )  
 

  
  

     (  ) 

We apply (12) and (13) in (11) we get, 

  *∑   
 
   +         *∑   

 
   + (15)    

Comparing both sides of (15) 

  *  +      ,                            (16)             

  *  +      *  + ,                  (17)      

  *  +      *  +.                            (18) 

In general, the recursive relation is given by  

  *  +      *    +                                   (19) 

Further we apply inverse Sumudu transform to (16)-(19) then: 
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     ( )    (20)   

        ,   *    +-                                    (21)             

Where  ( ) is a function that arises from the source term and prescribed initial 

conditions. 

5. Some Numerical Examples     

5.1. Example 

We introduce the following Bratu-type differential equation of fractional order  

    ( )     ( )                                  (22)                                                                   

Subject to initial condition 

   ( )     ,   ( )    (23)                                   

The exact solution is given by   ( )      (    )for     . 

For approximate solution, we apply Sumudu transform to both side of equation (22) 

  *   ( )+    {  ( )}    

  *   ( )+    {  ( )} 

By using definition 2.5 and initial condition (23) we have:                                                                                                        

 
 ( )

   
 ( )

     
  ( )

       {  ( )} 

 
 ( )

   
 

     
 

       {  ( )} 

 
 ( )

     {  ( )} 

  ( )      {  ( )} 

  * ( )+      {  ( )} (24) 

Further we apply inverse Sumudu transform to (24) to get 

  ( )     ,    {  ( )}-  

                     ,   {  ( )}- 

   ( )     * +    (25)      

     ( )      ,   *  +- (26) 

In this example, the nonlinear term is      ( ) 

From equation (14) we have 

       ( ) 
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      ( ) 
  ( ) (27) 

      ( ) 
  ( )  

  
 ( )

  
   ( ) 

We put      in equation (26)  

   ( )      ,   *  +- (28)    

 Substituting equation (27) in (28) we get 

   ( )      ,   {   ( )}- 

                       ,   *  +- 

                       ,   * +- 

                       ,  - where  * +    

   ( )   
   

 (   )
 

We put      in equation (26)  

   ( )      ,   *  +- (29)    

Substituting equation (27) in (29) we get 

   ( )      ,   {  ( ) 
  ( )}- 

         0   2
   

 (   )
  31 

                       0   2
   

 (   )
 31 

                       0   2
   

 (   )
31 

                       0   

 (   )
 *  +1 

                       0
   

 (   )
 *  +1 

                       0
   

 (   )
   (   )1 

                       ,   - 

   ( )   
     

 (    )
 

We put      in equation (26)  

  ( )      ,   *  +- (30) 

Substituting equation (27) in (30) we get 



N. B. Manjare et al., J. Sci. Res. 12 (4), 585-605 (2020) 593 

 

    ( )      0   2  ( ) 
  ( )  

  
 ( )

  
   ( )31 

                           [   {
     

 (    )
   

.
   

 (   )
/
 

  
  }] 

                           0   2
     

 (    )
  

    

 ( (   )) 
 31 

                           0  , ( (   ))   (    )-

  (    )( (   )) 
 *   +1 

                           0  , ( (   ))   (    )-

  (    )( (   )) 
    (    )1 

                        
, ( (   ))   (    )-

 ( (   )) 
   ,   - 

                        
, ( (   ))   (    )-

( (   )) 
   

 (    )
 

   ( )   
[ ( (   ))   (    )]

 (    )( (   )) 
    

The series solution is given by 

  ( )    ( )    ( )    ( )    ( )     

                     
   

 (   )
 

     

 (    )
  

, ( (   ))   (    )-

 (    )( (   )) 
      

In particular case     then we get  

   ( )     
  

 
 

 

  
     

Table 1 shows that approximate solutions of y(t) for (22) obtained for different values 

of   using the Sumudu decomposition method, DTM [15] and RKM [20]. We can observe 

the numerical results in Table 1, it is clear that the approximate solutions of SDM are in 

best agreement with approximate solutions of DTM and RKM. Those solutions are 

constantly based on the Caputo fractional derivative. According to Taylors Theorem and 

its corollary, the obtained Taylor series is convergent about a=0.  

 Fig. 1 shows the behaviour of approximate solutions versus exact solution. The non- 

linear differential equation plots non-linear curves for various approximate values 

                      and exact value      All non-linear curves of approximate 

solutions are very close to non-linear curve of exact solution.  

 

Table 1. The comparisons of SDM, DTM and RKM for various 

values of  . (for x=0.1 and N=n=5). 
 

α SDM DTM [15] RKM [20] 

1.5 4.7780E-2 4.8260E-2 3.7921E-2 

1.6 3.5470E-2 3.5472E-2 2.9221E-2 

1.7 2.5988E-2 2.5993E-2 2.2504E-2 

1.8 1.8975E-2 1.8983E-2 1.7221E-2 

1.9 1.3814E-2 1.3814E-2 1.3082E-2 
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Fig. 1. The behavior of approximate solutions for the various values of   versus exact solution. 

 

5.2. Example 

Consider the following problem 

    ( )     ( )                                  (31)                                                                   

Subject to initial condition 

   ( )     ,   ( )    (32)                                   

The exact solution is given by   ( )    (    ) for     . 

For approximate solution, we apply Sumudu transform to both side of equation (31) 

  *   ( )+   {   ( )}    

  *   ( )+   {   ( )} 

By using definition 2.5 and initial condition (32) we have:                                                                                                        

 
 ( )

   
 ( )

     
  ( )

      {   ( )} 

 
 ( )

   
 

     
 

      {   ( )} 

 
 ( )

    {   ( )} 

  ( )     {   ( )} 

  * ( )+     {   ( )} (33) 

Further we apply inverse Sumudu transform to (33) to get 

0
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  ( )     ,   {   ( )}-  

                    ,   {   ( )}- 

   ( )     * +    (34)      

     ( )     ,   *  +- (35)  

In this example, the nonlinear term is       ( ) 

From equation (14) we have 

        ( ) 

       ( ) 
   ( ) (36) 

       ( ) 
   ( )     

 ( )    ( ) 

We put      in equation (35)  

   ( )     ,   *  +- (37)    

 Substituting equation (36) in (37) we get 

   ( )     ,   {    ( )}- 

                      ,   *  +- 

                      ,   * +- 

                      ,  - where  * +    

   ( )   
  

 (   )
 

We put      in equation (35)  

   ( )     ,   *  +- (38)    

Substituting equation (36) in (38) we get 

   ( )     ,   {   ( ) 
   ( )}- 

                      0   2 
  

 (   )
  31 

                      0   2 
  

 (   )
 31 

                      0   2 
  

 (   )
31 

                      0   

 (   )
 *  +1 

                      0
   

 (   )
 *  +1 

                      0
   

 (   )
   (   )1 
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                       ,   - 

   ( )   
     

 (    )
 

We put      in equation (35)  

   ( )     ,   *  +- (39) 

Substituting equation (36) in (39) we get 

   ( )     [   {   ( ) 
   ( )     

 ( )    ( )}] 

                        [   { 
    

 (    )
    .

  

 (   )
/
 

  }] 

                        0   2 
     

 (    )
   

   

( (   )) 
 31 

                        0   , ( (   ))   (    )-

 (    )( (   )) 
 *   +1 

                        0   , ( (   ))   (    )-

 (    )( (   )) 
    (    )1 

                      
, ( (   ))   (    )-

( (   )) 
   ,   - 

                      
, ( (   ))   (    )-

( (   )) 
   

 (    )
 

   ( )   
[ ( (   ))   (    )]

  (    )( (   )) 
    

The series solution is given by 

  ( )    ( )    ( )    ( )    ( )     

             
  

 (   )
 

     

 (    )
  

[ ( (   ))   (    )]

  (    )( (   )) 
      

In particular case     then we get  

  ( )   
  

  
 

   

  
 

  

  
     

Table 2 shows that approximate solutions of y(t) for (31) obtained for different values 

of   using the Sumudu decomposition method, DTM [15] and RKM [20]. We can observe 

the numerical results in Table 2, it is clear that the approximate solutions of SDM are in 

best agreement with approximate solutions of DTM and RKM. Those solutions are 

constantly based on the Caputo fractional derivative. According to Taylors Theorem and 

its corollary, the obtained Taylor series is convergent about a=0.  

 Fig. 1 shows the behaviour of approximate solutions versus exact solution. The non- 

linear differential equation plots non-linear curves for various approximate values 

                      and exact value      All non-linear curves of approximate 

solutions are very close to non-linear curve of exact solution.  
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Table 2. The comparisons of SDM, DTM and RKM for various 

values of  . (for x=0.1 and N=n=5). 
 

α SDM DTM [15] RKM [20] 

1.5 2.4130E-2 2.3957E-2 2.3791E-2 

1.6 1.7735E-2 1.7652E-2 1.7571E-2 

1.7 1.2996E-2 1.2956E-2 1.2917E-2 

1.8 9.4913E-3 9.4725E-3 9.4537E-3 

1.9 6.9070E-3 6.8982E-3 6.8894E-3 

 

 
Fig. 2. The behavior of approximate solutions for the various values of   versus exact solution. 

 

5.3. Example 

  

Consider the following Bratu-type problem 

     ( )      ( )                                                         (40)                                                                   

Subject to initial condition 

   ( )     ,   ( )    (41)                                   

The exact solution is given by   ( )     (      (  )) for     . 

For approximate solution, we apply Sumudu transform to both side of equation (40) 

  *    ( )+     {  ( )}    

  *    ( )+     {  ( )} 

By using definition 2.5 and initial condition (41) we have:                                                                                                        

 
 ( )

    
 ( )

      
  ( )

         {  ( )} 

 
 ( )

    
 

      {  ( )} 
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0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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  ( )             {  ( )} 

  * ( )+             {  ( )} (42) 

 Further we apply inverse Sumudu transform to (42) to get 

  ( )     ,           {  ( )}- , 

                      ,  -       ,    {  ( )}- 

Applying the Sumudu transform to initial condition yields   ( )   . Considering   ( ) 

from source term and prescribed initial conditions 

   ( )       ,  -  
    

 (   )
 (43)      

     ( )       ,    *  +- (44)  

In this example, the nonlinear term is      ( ) 

From equation (14) we have 

       ( ) 

      ( ) 
  ( ) (45) 

      ( ) 
  ( )  

  
 ( )

  
   ( ) 

We put      in equation (44)  

   ( )       ,    *  +- (46)    

 Substituting equation (45) in (46) we get 

   ( )       ,    {   ( )}- 

                        ,    *  +- 

                         ,    * +- 

                         ,   - where  * +    

   ( )   
     

 (    )
 

We put      in equation (44)  

   ( )       ,    *  +- (47)    

Substituting equation (45) in (47) we get 

    ( )       ,    {  ( ) 
  ( )}- 

       0    2
    

 (   )
   ( )31 

       0    2
    

 (   )
  31 
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       0    2
    

 (   )
 31 

       0     

 (   )
 *  +1 

       0     

 (   )
   (   )1 

       ,   - 

   ( )  
     

 (    )
 

We put      in equation (44)  

   ( )       ,    *  +- (48) 

Substituting equation (45) in (48) we get 

   ( )       0    2 
 
( )   ( )  

  
 ( )

  
   ( )31  

                 [    {
     

 (    )
   

.
    

 (   )
/
 

  
  }] 

                 0    2
     

 (    )
  

     

  ( (   )) 
 31 

                  0     , ( (   ))   (    )-

  (    )( (   )) 
 *   +1 

              , ( (   ))   (    )-

  (    )( (   )) 
   ,       (    )- 

              , ( (   ))   (    )-

 ( (   )) 
   ,   - 

              [ ( (   ))   (    )]

 ( (   )) 
   

 (    )
 

   ( )  
[ ( (   ))   (    )]

 ( (   ))  (    )
      

The series solution is given by 

  ( )    ( )    ( )    ( )    ( )    

            
    

 (   )
 

     

 (    )
 

     

 (    )
 

[ ( (   ))   (    )]

 ( (   ))  (    )
        

In particular case     then we get  

  ( )     
(  ) 

  
 

(  ) 

  
 

 (  ) 

  
   

Table 3 shows that approximate solutions of y(t) for (40) obtained for different values of 

  using the Sumudu decomposition method and DTM [15]. We can observe the numerical 

results in Table 3, it is clear that the approximate solutions of SDM are in best agreement 
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with approximate solutions of DTM. Those solutions are constantly based on the Caputo 

fractional derivative. According to Taylors Theorem and its corollary, the obtained Taylor 

series is convergent about a=0.  

 Fig. 3 shows the behaviour of approximate solutions versus exact solution. The non- 

linear differential equation plots non-linear curves for various approximate values 

                      and exact value    . All non-linear curves of approximate 

solutions are very close to non-linear curve of exact solution.  

 
Table 3. The comparisons of SDM and 

DTM for various values of  . (for x=0.1 

and N=n=5). 
 

α SDM DTM [15] 

0.5 2.8463 2.8288 

0.6 1.7418 1.7500 

0.7 1.0985 1.1107 

0.8 0.7495 0.7598 

0.9 0.5194 0.5270 

 

 
Fig. 3. The behavior of approximate solutions for the various values of   versus exact solution. 

 

 

5.4. Example 

Consider initial value Bratu-type problem  

     ( )       ( )                                  (49)                                                                   
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The exact solution is given by   ( )    (      (  ))for     . 

For approximate solution, we apply Sumudu transform to both side of equation (49) 

  *    ( )+     {   ( )}    

  *    ( )+      {   ( )} 

By using definition 2.5 and initial condition (50) we have:                                                                                                        

 
 ( )

    
 ( )

      
  ( )

          {   ( )} 

 
 ( )

    
 

       {   ( )} 

  ( )             {   ( )} 

  * ( )+             {   ( )} (51) 

 Further we apply inverse Sumudu transform to (51) to get 

  ( )     ,           {   ( )}- , 

       ,  -       ,    {   ( )}- 

Applying the Sumudu transform to initial condition yields   ( )   . Considering   ( ) 

from source term and prescribed initial conditions 

   ( )       ,  -  
    

 (   )
 (52)      

     ( )        ,    *  +- (53)  

In this example, the nonlinear term is       ( ) 

From equation (14) we have 

        ( ) 

       ( ) 
   ( ) (54) 

       ( ) 
   ( )  

  
 ( )

  
    ( ) 

We put      in equation (53)  

   ( )        ,    *  +- (55)    

 Substituting equation (54) in (55) we get 

    ( )        ,    {    ( )}- 

         ,    *  +- 

         ,    * +- 

         ,   - where  * +    

   ( )    
     

 (    )
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We put      in equation (53)  

   ( )        ,    *  +- (56)    

Substituting equation (54) in (56) we get 

          ( )        ,    {   ( ) 
   ( )}- 

        0    2 
    

 (   )
    ( )31 

        0    2 
    

 (   )
  31 

        0    2 
    

 (   )
 31 

        0 
     

 (   )
 *  +1 

                           0 
     

 (   )
   (   )1 

                           ,   -  

   ( )  
     

 (    )
 

We put      in equation (53)  

   ( )        ,    *  +- (57)                                           

Substituting equation (54) in (57) we get 

    ( )        0    2   ( ) 
   ( )  

  
 ( )

  
    ( )31 

        [    {
     

 (    )
   

.
    

 (   )
/
 

  
  }] 

        0    2
     

 (    )
  

     

  ( (   )) 
 31 

        0     , ( (   ))   (    )-

  (    )( (   )) 
 *   +1 

     , ( (   ))   (    )-

  (    )( (   )) 
   ,       (    )- 

     , ( (   ))   (    )-

 ( (   )) 
   ,   - 

     , ( (   ))   (    )-

 ( (   )) 
   

 (    )
 

    ( )    
, ( (   ))   (    )-

 ( (   ))  (    )
      

The series solution is given by 

  ( )    ( )    ( )    ( )    ( )     
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 (   )
 

     

 (    )
 

     

 (    )
 

, ( (   ))   (    )-

 ( (   ))  (    )
        

In particular case     then we get  

  ( )      
(  ) 

  
 

(  ) 

  
 

 (  ) 

  
   

Table 4 shows that approximate solutions of y(t) for (49) obtained for different values 

of   using the Sumudu decomposition method and DTM [15]. We can observe the 

numerical results in Table 4, it is clear that the approximate solutions of SDM are in best 

agreement with approximate solutions of DTM. Those solutions are constantly based on 

the Caputo fractional derivative. According to Taylors Theorem and its corollary, the 

obtained Taylor series is convergent about a=0.  

 Fig. 4 shows the behaviour of approximate solutions versus exact solution. The non- 

linear differential equation plots non-linear curves for various approximate values 

                      and exact value    . All non-linear curves of approximate 

solutions are very close to non-linear curve of exact solution. 

Table 4. The comparisons of SDM and DTM for 

various values of   (for x=0.1 and N=n=5). 
 

α SDM DTM [15] 

0.5 0.8719 1.0790 

0.6 0.6112 0.7398 

0.7 0.4638 0.5359 

0.8 0.4025 0.4366 

0.9 0.3328 0.3474 

 

 
 
Fig. 4. The behavior of approximate solutions for the various values of   versus exact solution. 
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6. Conclusion 

 

In the present work, the approximate analytical solutions for nonlinear fractional Bratu-

type differential equations along with Caputo fractional derivative by using Sumudu 

decomposition method were procured. The obtained approximate solutions were written 

in a series form which converges rapidly. The approximate solutions were compared with 

DTM [15] and RKM [20]. We can observe that there exists obtained solution is an 

excellent agreement with already available solution. Thus, we say that this approach can 

be executed to solve the problems [FBDEs] effectively. With the help of obtained 

solutions, we observe that addition of one by one term in convergent series, the absolute 

errors and relative errors were decreased. We compared exact solution and approximate 

solutions by using graphical representation. This comparison suggests that our results are 

much better. We applied effectively the recurrence relation of Adomian polynomials for 

calculations of the non-linear terms. It is seen that the Sumudu decomposition method is 

implemented simply and effectively for fractional non-linear differential equations. Also, 

the SDM is applied for solution of non-linear problems without using He’s polynomials, 

without identifying Lagrange’s multiplier and without implementing quasilinearization 

technique. This is important advantage which is applicable for types of non-linear 

fractional differential equations.  It is concluded that the present method gives good 

results. The proposed methodology can be implemented on other types of non-linear 

fractional differential equations and non-linear fractional partial differential equations. 
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