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Abstract 

In this paper we have presented a deterministic model for pneumonia transmission and we 

have used the model to avail the potential impact of therapy. The model is based on the 

vaccinated-susceptible-carrier-infected-recovered-susceptible compartmental structure and 

their possible interventions with the possibility of infected individual recovery from natural 

immunity. Here, we have modeled Pneumonia considering vaccination, screening and 

treatment with a system of nonlinear ordinary differential equation. The model reproduction 

number R0 is derived and the stability of the equilibria are derived. The stability of 

equilibrium points is analyzed. The results shows that there exists a locally stable disease 

free equilibrium points, E0 when R0<1 and a unique endemic equilibrium E1, when R0>1. 

Infection free point was found to be locally stable and if reproduction number is greater than 

unity, then there is unique endemic equilibrium point and if it is less than unity, the endemic 

equilibrium point is globally asymptotically stable and pneumonia will be eliminated. 
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equilibrium. 
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1.   Introduction 

Pneumonia is an infection of the lungs that is caused by bacteria, viruses, fungi, or 

parasites which is characterized primarily by inflammation in the lungs or by alveoli that 

are filled with fluid. Bacteria and viruses are the primary causes of pneumonia. When a 

person breath pneumonia causing pathogens into his lungs, and the body's immune system 

cannot prevent entry, the organisms settle in the small air sacs called alveoli and continue 

to multiply. The host body sends white blood cells to attack the infection causing the sacs 

to be filled with fluid and pus causing pneumonia. The people most susceptible to 

pneumonia are the old, infant, the sick and those with impaired immune systems [1]. 
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Protozoal and helmenthic parasitic pnuemonia and lung involvement are common in 

tropics with few exceptions, they most commonly occur in the western world and are 

diseases of immune-compromised hosts [2]. At the present time world is facing the crisis 

of novel infectious disease called COVID-19.Most people who get COVID-19 have mild 

or moderate symptoms like coughing, a fever, and shortness of breath. But some who 

catch the new coronavirus get severe pneumonia in both the lungs. COVID-19 pneumonia 

is a serious illness that can be deadly [3].  

 Pneumococus spreads through contact with people who are ill or who carry the 

bacteria in their throat. It is common for people, especially children, to carry bacteria in 

their throat without being sick. After a person is infected and diagnosed with pneumonia, 

he will be on medication for a particular period of time, the infection is contagious for 10 

to 14 days after the infected person stops getting treatment [4]. 

 Prevention of pneumonia includes vaccination, environmental measures, screening 

and appropriately treating the diseases. Suctioning the mouth and throat of infant with 

micronium stained amniotic acid decreases the rate of aspiration pneumonia. 

Environmental prevention methods include reduction indoor air pollution as well as 

smoke cessation and hand-washing when around a person with pneumonia, since the 

bacteria and viruses can also spread through ones hands and then to the mouth [5]. The 

present vaccination for pneumonia fails in the case of coronavirus pneumonia. Parasitic 

pneumonia is mostly treated with anti-parasitic or sometimes deworming methods. Many 

anti-parasitic drugs are on trial for the probable treatment of COVID-19 as one such is 

ivermectin [6]. Some of the precautionary measure as school deworming programs which 

was initiated by WHO, that could be an alternative to curb these diseases. Probiotics is 

one more option for precautionary measure as probiotics remain a promising method to 

prevent ventilator associated pneumonia (VAP) and other infections in critically ill 

patients, with biological plausibility clinical promise and apparent cost effectiveness 

based on data available to date [7]. 

 Huang et al. [8], Lipsitch et al. [9] and Otieno et al. [10], have done research on the 

dynamics of pneumonia. In this paper, we have considered the weak nature of immune 

system which is vulnerable to different types of pneumonia as long as they coexist in 

population. It also considers the effects of treatment and the likelihood of wrong treatment 

due to similar symptom. It stresses the need of vaccinating, proper screening, proper 

treatment to avoid relapse and boosting of natural immunity to eradicate pneumonia. Here, 

we have formulated a model based on vaccination screening and treatment and different 

probabilities. And here we will try to find possible ways to curb pneumonia and to some 

extent coronavirus which is a major problem the world is facing now. 

 This paper is structured as follows. In section 2, the model is formulated based on the 

assumptions and definitions of variables and parameters. In section 3, model analysis 

where we have analyzed the model based on reproduction number and stability analysis of 

the model. In section 4, sensitivity analysis of the model is available to analyze the 

sensitive parameters of the model for the transmission dynamics of pneumonia. Finally in 

section 4, we discuss the results and make a conclusion. 
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2. Model Formulation and Description  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A Compartmental Diagram for the Pneumonia Transmission dynamics. 

 

Model Equations  
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With initial condition S(0)=S0, (V0)=V0, C(0)=C0, I(0)=I0, R(0)=R0 

 

Table 1. Description of Variable and parameters of the model. 
 

Variable  Description  

V(t) No. of vaccinated individuals at time t 

S(t) No. of susceptible individuals at time t 

C(t) No. of Carrier individuals at time t 

I(t) No. of  infected  individuals at time t 

R(t) No. of recovered individuals at time t 

 
Parameters Interpretation 

  Recruitment rate 

  Natural death rate 

  Disease induced death rate for I class 

  Force of infection 

a Probability that newly infected individuals are asymptomatic / carrier. 

  Waning rate of vaccine 

  Rate of vaccination from S to V 

   Rate of vaccinated getting carrier and infected 

  Rate at which carrier transform to susceptible class 

  Rate at which carrier transform in infected class 

  Rate of infected getting carrier and infected. 

  Recovery rate due to prompt treatment 
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  Recovery rate due to infected class 

v Rate at which infected transferring to susceptible class. 

  Rate at which recovered person getting susceptible. 

 

The model divides the total population into five subclasses namely susceptible S(t), 

Vaccinated V(t), Carrier C(t), Infected I(t) and recovered R(t). The individuals are 

recruited into the vaccinated and susceptible class either by immigration or by birth rate 

        be the natural death at any compartment. Let p  be the number of vaccinated 

persons. Let (1-p)         susceptible number of people. Since vaccines wanes with time 

the protected individuals after its expiry return backs to susceptible compartment at the 

rate  . Individuals move from susceptible class to vaccinated class with vaccination rate 

of  . The susceptible class is infected either by carrier or symptomatically infected 

individuals with a force of infection  

 

   (
 ( )    ( )

 
) 

 

where       K is contact rate,   is the probability that contact is effective to cause 

infection and   is transmission coefficient for the carrier. If  >1 then, the carriers infect 

susceptible more highly than infective. If  =1, then both carriers and infective have good 

chance to infect susceptible than carriers. It is assumed in the model that vaccinated class 

(V) also has a chance of transferring to infection or carrier classes with small proportion. 

The force of infection for the vaccinated class be    =   where 0     and   is the 

proportion of the serotype not covered by the vaccine. Newly affected individuals by the 

force of infection become either carrier with a probability of ‘a’ and joins the carrier class 

C or move to the infected class I with probably of ‘1-a’. The carrier class can develop and 

join the infected class with a rate of   or recover by gaining natural immunity at   rate. 

Individuals in the infected class move to recovered compartment at a per capita rate of   

by treatment, with treatment efficiency of q proportion of individuals join the recovered 

class or join the carrier class with (1-q) proportion by adapting the treatment, or die from 

the disease at the rate  . Individuals from recovered class lose their temporary immunity 

by   rate. Recovery rate from infected class be Ø. Let γ be the rate at which carriers gets 

back to susceptible class.  

 

3. Model Analysis  

 

3.1. Equilibrium states of the model/the disease free equilibrium (EFE) 

 

The disease free equilibrium of model (1) to (5) is obtained by equating it to zero.  

i.e.,
  

  
 
  

  
 
  

   
 
  

  
 
  

  
 

and in the absence of disease.  

I=0, C=0, R=0 reads to  

       (   )                                                                                                                                (6) 
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(   )     (   )                                                                                                                            (7) 

then by rearranging (6) and (7) and after substituting each other, we get  
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Then the disease free equilibrium is given by,  
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3.2. The effective reproductive number (Reff) 

 

The threshold parameter that governs the spread of a disease is called the effective 

reproduction number. The reproduction number is calculated by next generation matrix 

method as follows [11,12]: 

The model equations are: 
  ( )
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by the principle of next generation matrix, we get,  

[
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]                                                                                                                     (9) 

Since   = bC + dI 

Where b=K   is transmission co-efficient for the carrier compartment and d=k  is also 

the transmission co-efficient for the infective compartment. The Jacobian of matrix f and v 

with respect to c and I at the disease free equilibrium (V0, S0, 0, 0, 0) is as follows: 
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Similarly,  
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Then the jacobian matrix of f and v at the disease free equilibrium are,  

  [
  (      )   (      )

(   ) (      ) (   ) (      )
]  ; 

  [
         (   ) )

         
] 

for any 2x2 matrix sayG *
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Now, to obtain dominant eigenvalue of FV
-1
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The eigenvalue of FV
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 is obtained as follows: 
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    ( (       ))  ((   )(       )   )      

 (   ( (        )(   )(      )     

The eigenvalue are,  

   = 0 

  = a(ba1+da2)+(1-a)(ba3+da4)=0  

Among   and   the dominant eigenvalue is λ2 

The Reff = a(ba1+da2)+(1-a)(ba3 +da4) 

By substituting the values of a1, a2, a3, a4, are effective reproduction number become  

Reff = *
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Put b=k   and d=k  and X=k , 
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3.3. Analysis of Reff 

 

The Reff measure the average number of new infectious generated by a typically 

infectious individual in a community when some strategies are in place, like vaccination 

or treatment. The calculated Reff is, 

Reff= k *
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For the overall disease transmission there is a combination from susceptible population 

(  
 ) and vaccinated population (  

 ) 

 

Definition 3.1  

 

1. The threshold parameters   
 , is the reproduction number when all individuals are 

vaccinated.  

2. The threshold parameter   
  is the reproduction number when all individuals are 

vaccinated 

Let us suppose that initially the entire population is susceptible. This means that    , 

p=0,    ,    ,  then Reff becomes,  
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which is the basic reproductive number, means the average number of secondary 

infectious caused by a single infective in totally susceptible population. 
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3.4. Local stability of disease free equilibrium 

 

Theorem 3.4  

The disease free equilibrium point if locally asymptomatically stake of Reff<1 and 

unstable of Reff>1.  

 

Proof : 

To prove DFE, Jacobian matrix of the system (1) and (5) at E0 are: 
J(V0,S0,0,0)=   

[
 
 
 
 
 (   )             

  (   )           

              (       )            (   )  

  (   )     (   )      (   )     (   )     ((       )  

      (     )        ]
 
 
 
 

(11) 

So obtain eigenvalues of (11) 
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= 0                                                                                                                                              (13) 

Eq. (12) is expanded and simplified 

   +(      )  + (     )    

then by Routh-Hurwitz criteria eq. (13) have strictly negative root.  

The determinant of eq. (13) can be obtained as 
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Rearranging eq. (14) it becomes,  
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By Routh-Hurwitz Criteria a1>0  

means that  

( ( (       )    )  (   )( (        )   (   ) ))(      )

 (        )(       ))  (   ) 

( ( (       )    )  (   )( (        )   (   ) ))(      )

 (        )(       ))  (   ) 

( ( (       )    )  (   )( (        )   (   ) ))(      )

(        )(       ))  (   )  
    

i.e., Reff<1 

Thus the disease free equilibrium is locally asymptomatically stable if Reff<1. 

 

3.5. The endemic equilibrium (EF)  

 

The endemic equilibrium is defined as a steady state solution of the model and it is 

denoted by E
*
. It means that the disease persists. It is obtained by equating the system (1)-

(5) to zero.  

Taking equation third and fourth of the model, we get,  

C*=
(   )(   )   (       )

(   )((        ))   
                                                                                                                                                                          (15)  

From the first equation of the model,  

V*= 
      

      
                                                                                                                                                         (16) 

by combining (15) and the third and fourth equation of the model we obtain,  
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From (15), (16), (17) and second equation of the model we get,  
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Where  

A1=(        )((       )-n(1-q), 

A2= a  (   ) (        ) 
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A3=a(     )2(  (   )(        )) 

A4= a  (   ) (      ), 

A5= ((   ) (   )   (        )+(    (   ) (        )   

D1 =     

D2 =   (   )  

D3 =      

D4 =    

D5 =        

D7 =A4       

Hence E
* 
= (V

*
, S

*
, C

*
, I

*
, R

*
,) is the endemic equilibrium of the model (1)-(5).  

 

Lemma 3.1  

 

For Reff>1 a unique endemic equilibrium point E
* 

exist and no endemic equilibrium 

otherwise. 

 

3.6. Sensitivity analysis of the model parameters 

 

Sensitivity analysis identifies the parameter that has a high impact on the reproduction 

number (Reff). The normalized forward sensitivity index of a variable to a parameter is a 

ratio of the relative change in the variable to the relative change in the parameter [13]. If a 

variable is a differentiable function of the parameter the sensitivity index may be 

alternately defined using partial derivatives. The sensitivity index can be calculated for all 

the parameters by using the formula:  

   
 = 

  

  

 

 
 eg.     

    
 = 
     

  

 

     
=1 or      

    
 = 
     

  

 

     
 

The values of parameters involved in Reff are as follows: 

 
Table 2. Desciption of parametric values. 
 

 Parameters  Interpretation   Parameters  Interpretation      

  6   0.2     

  0.4 a 0.338     

  06   0.002     

  0.001   0.33     

  0.9   0.01     

  1   0.1     

q 0.5   0.05     

  0.0238   0.89     

  0.0115   0.2     

 

The values are taken from literature [14,15] and some are assumed and its calculated 

sensitivity indices are as follows.  
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Table 3. Sensitivity indices of parameters. 
 

Parameters  Interpretation  Parameters  Interpretation    

  +ve   -ve   

  +ve   -ve   

  -ve a -ve   

  +ve   -ve   

  -ve   +ve   

  +ve   -ve   

q -ve   -ve   

  -ve     

 

3.6.1. Representation of sensitivity indices 

 

From the values of the parameter which are given in Table 2, we have calculated the 

sensitivity indices in the Table 3 from which we conclude that K,             are 

increased keeping other parameters constant.They increased the value of Reff, thus they 

increased the endemicity of the disease as they have positive indices. Whereas the 

parameters p, q,                     decreased the value of  Reff when they are 

increased while keeping the other parameters constant, which implies that they decreased 

the endemicity of the disease as they have negative indices. 

 

4. Discussion  

 

The parameters which play the significant role in making the reproduction number less 

than unity which is calculated that could lead to elimination of pneumonia. If these 

parameters can be controlled by adopting some of the precautionary measures like school 

deworming programs and safe use of probiotics under medical supervisions at susceptible 

and carrier classes can help strategically in control programs. These methods are cheap, 

safe and effective at screening level. It could be a preventive measure and could also help 

in reducing the severity of pneumonia and COVID-19 to some extent. This will help in 

boosting the natural immunity of the body. Some of the measures are suggested based on 

our model where further research and investigation can be done in this direction as an 

alternate method in the present time of crisis.  

 

5. Conclusion   

 

The model of pneumonia was formulated and analyzed. The invariant set in which the 

solutions of the model is biologically meaningful was derived. Also boundedness of 

solution was proved. Analysis of the model showed that there exist two possible solutions, 

namely the DFE and endemic equilibrium point. Further analyses showed that the disease 

free point is locally stable if Reff<1 or otherwise unstable if Reff>1 that leads endemic 

equilibrium. The sensitivity indices showed the parameter which leads to increase in Reff 

are K,            . If these factors are reduced i.e., contact rate K, rate at which 

vaccinated getting transferred to carrier and infected classes i.e., є ,waning rate of vaccine 
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α, rate at which carrier transfers to infected class   and   i.e., the probability that a contact 

is effective to cause infection, that could lead to elimination of  pneumonia. 
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