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Abstract 

This work investigates the mathematical model and solution for an unsteady MHD fourth 

grade fluid flow over a vertical plate in a porous medium with the effects of the magnetic 

field and suction/injection parameters using Homotopy Perturbation Method. The flow is 

considered to satisfy the constitutive equations of fourth grade fluid flow model and because 

of the Homotopy Perturbation Method used, only the momentum equation with initial and 

boundary conditions are solved as governing equations. After initializing stability test, the 

convergence of the governing equations are observed graphically using the results of 

Homotopy Perturbation Method with the new analytical method used by Yurusoy in 

literature and there is a perfect agreement in results. The impact of dimensionless second, 

third and fourth grade parameters with the effects of magnetic field and suction/injection 

parameters on the velocity field are displayed graphically and discussed. Increase in suction 

parameter decreases the momentum boundary layer thickness while injection parameter 

enhances velocity distribution in the boundary layer. Magnetic field reduces velocity 

throughout the boundary layer because the Lorentz force which acts as retarding force 

reduces the boundary layer thickness. 

Keywords: Unsteady; MHD; Fourth grade fluid flow; Homotopy perturbation method; 

Boundary layer thickness. 
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1.   Introduction 

Industrially and technologically, considerable attention has been given in recent years to 

flow problems of non-Newtonian fluids. Due to the flow behaviour of non-Newtonian 

fluids, their governing equations are much more complicated and highly non-linear when 

compared to Newtonian fluids which have few analytical solutions. Non-Newtonian fluids 

exhibit normal stress differences and their viscosity depends on the shear rate. These 

distinct features and other features of non-Newtonian fluids result in more complex 

equations for the fluid flow. There is no single model that clearly exhibits the properties of 
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all non-Newtonian fluids. Arifuzzaman et al. [1] analyzed heat and mass transfer 

characteristics of naturally convective hydromagnetic flow of fourth grade radiative fluid 

resulting from vertical porous plate taking into consideration nonlinear order chemical 

reaction and heat generation with thermal diffusion by using finite difference scheme 

explicitly. Rajagopal [2] examined the stability of third grade fluid with results and 

discussions given on many of the interesting and challenging issues in the fluids of 

differential type. Arifuzzaman et al. [3] numerically investigated the MHD convective and 

chemically reactive unsteady micropolar fluid flow with nanoparticles through the vertical 

porous plate with mass diffusion, thermal radiation, radiative absorption and heat source 

with a flow model by using boundary layer approximation. Homotopy Analysis Method 

was used for the fourth grade flow of a Couette and Poiseuille flows by Siddiqui et al. [4]. 

The effects of some thermos-physical parameters were considered on the flow of a fourth 

grade or fourth order fluid in a porous space or plate by Hayat et al. [5-7]. Reza-E-Rabbi 

et al. [8] elaborated the heat and mass transfer analysis of casson Nano fluid flow past a 

stretching sheet together with MHD thermal radiation and chemical reaction effects using 

explicit finite difference scheme. Arifuzzaman et al. [9] modeled an unsteady natural 

convective and higher order chemically reactive MHD fluid flow with heat and radiation 

absorption effects through a vertical oscillating porous plate. Boundary layer 

approximation was carried out to establish a flow model of time dependent momentum, 

energy and diffusion balance equations using non similar technique with explicit finite 

difference method. In another work, anomalous features were given in the model of 

second order fluid by Fosdick and Rajagopal [10]. The governing differential equation is 

highly non-linear and the analytic solution has not been reported in literature. Also, the 

order of the differential equation in the case of fourth grade fluid flow was higher than 

that of the Navier-Stokes equations. The no-slip boundary condition is sufficient for a 

Newtonian fluid but for a non-Newtonian fourth grade fluid flow, it may not be sufficient 

and therefore needs additional conditions at the boundary. The detailed review on the 

boundary conditions and the existence and uniqueness of the solution for second and third 

grade fluids were given by Passerini and Patria [11]. Arifuzzaman et al. [12] considered 

the numerical investigation of MHD transient naturally convective and higher order 

chemically reactive Maxwell fluid with nanoparticle flow through a vertical porous plate 

with the effects of heat generation and radiation absorption using a boundary layer 

approximation to develop the flow model representing time dependent momentum, energy 

and concentration equations which were solved by non-similar technique explicit finite 

difference method. This paper has established an analytic solution based on the Homotopy 

Perturbation Method proposed by He [13] and found that there was no need to augment 

the boundary conditions for the solutions of Homotopy Perturbation Method.  The 

Homotopy Perturbation Method was successfully applied to solve some related problems 

by Sobamowo and Akinshilo [14].  Arifuzzaman et al. [15] gave a theoretical work with 

numerical investigation of MHD transient naturally convective and higher order 

chemically reactive, viscoelastic fluid with nanoparticles flow through a vertical porous 

stretching sheet with the effect of heat generation and radiation absorption. A boundary 
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layer approximation was carried out to develop the flow model representing time 

dependent momentum, energy and concentration equations which were solved using non 

similar technique of explicit finite difference method. Tan and Masuoka [16], Wang and 

Wu [17] studied some important review on fluid of differential type;  new analytical 

solution of a fourth grade fluid past a porous plate was investigated by Yurusoy [18] and 

Heat transfer analysis of the steady flow of a fourth grade fluid flow was studied by Hayat 

et al. [19]. 

 Homotopy Perturbation Method is a simple and total approximate analytical method. 

Unlike Differential Transform Method (DTM), Homotopy Analysis Method (HAM), 

Adomian Decomposition Method (ADM), Variation Iteration Method (VIM) etc. where 

the search for a particular value that will satisfy the other end of the boundary condition 

necessitate the use of a numerical method with the use of a software which could result in 

additional computational cost in the generation of solution. Homotopy Perturbation 

Method eliminates the “small parameter assumption’’ as in the traditional perturbation 

methods. It is a powerful method that gives acceptable analytical results with convenient 

convergence and stability. Therefore, in finding the approximate analytical solutions of 

linear and nonlinear differential equations, Homotopy Perturbation Method has gained 

more ground in many engineering and scientific research papers [20]. It is an approximate 

analytical method that can solve differential equations, difference equations and 

differential-difference equations, fractional differential equations, pantograph equations 

and inter-differential equations. It also solves nonlinear integral and differential equations 

without linearization, discretization, closure, restrictive assumption, perturbation, 

approximations and round-off error that could result in massive numerical computations. 

It does not require small parameters in algebraic or differential equations as in other 

traditional perturbation method (regular and singular perturbations). It provides excellent 

approximations to the solutions of non-linear equations with higher accuracy. Marinca et 

al. [21] used an optimal homotopy assumption method to solve a steady flow of a fourth 

grade fluid past a porous plate. An optimal solution for the flow of the fourth grade fluid 

with partial slip was investigated by Islam et al. [22] and the effects of partial slip on 

fourth grade fluid with variable viscosity was investigated by Nadeem et al. [23]. 

 This work provides the mathematical model and solution for an MHD fourth grade 

fluid flow past a vertical porous plate with magnetic and suction/injection effects. The 

motivation comes from the desire to understand the shear thinning and thickening 

property of non-Newtonian fluids in the presence of magnetic field and suction /injection. 

This paper extends the works of Marinca et al. [21], Islam et al. [22] and Nadeem et al. 

[23] to include the effects of magnetic field and suction/ injection parameters with semi-

analytical solution via Homotopy Perturbation Method to solve the higher order non-

linear differential equations describing the fluid flow.  

2. Nomenclature 

MHD - Magnetohydrodynamics 

 
 

  
 is the material time derivative defined by  
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  denotes the vector product 

    is the Cauchy stress tensor for an incompressible fourth grade fluid,  

     is the current density,   is the magnetic induction  

  (        ) is the Darcy’s resistance due to the porous media in the  ,  , and   axes 

respectively 

 (   ) represents the fluid velocity field in the   direction 

      is the suction velocity and      is the injection velocity 

   is the applied magnetic field and   is the induced magnetic field 

  is the electrical conductivity of the fluid 

P is pressure, I is the identity matrix and   is the viscosity 

                are Rilvlin-Ericksen tensors  

  denotes fluid density 

   is the mainstream velocity 

                                             are the material parameters 

 is the second grade parameter,   is the third grade parameter and   is the fourth grade 

parameter. 

 

3. The Constitutive Equations for Fourth Grade Flow 

 

Considers an unsteady, MHD, incompressible, electrically conducting fourth grade fluid 

flow (a subclass of differential type fluids) which is an important class of non-Newtonian 

fluids that occupies region     in a porous medium. A Cartesian frame of reference 

along x-axis is chosen as the direction of fluid flow, parallel to the porous plate and the y-

axis is perpendicular to it. At t    , the fluid is bounded by an infinite porous plate. A 

transverse uniform magnetic field   (       ) is applied at the surface of the plate. Due 

to porous character of the plates, there is a cross-flow of the fluid with a constant velocity 

  . The velocity field of the fluid flow is a functions of   and   only. The plate is 

coinciding with the plane at    . Unsteady motion of the conducting fluid through a 

porous medium is governed by the conservation laws of momentum and mass as stated 

below:  

 Continuity equation                                                            (1) 

Momentum equation         
  

  
          (2) 

Where 
 

  
 is the material time derivative defined by  

 

  
 

 

  
 (   ) 

  denotes the vector product,   is  the Cauchy stress tensor for an incompressible fourth 

grade fluid,   is the current density,   is the magnetic induction and 

   (        ) is the Darcy’s resistance due to the porous media in the  ,  ,   

respectively. For the flow model under investigation, we consider a velocity field   of the 

form  

   ( (   )       )    (3) 
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Where  (   ) represents the fluid velocity field in the   direction,       is the suction 

velocity and      is the injection velocity. This velocity field identically satisfies the 

continuity equation (1). Thus, the disturbance in the fluid is a function of   and   only. 

 

 
 

Fig. 1. Geometry of the physical model and coordinate system. 

 

The current density given by   and    gives the total magnetic field such that        

where    is the applied magnetic field and   is the induced magnetic field. 

 In the analysis, the fluid is electrically conducting and a magnetic field is applied in 

the transverse direction to the flow. With the low magnetic Reynolds number, the induced 

electric and magnetic fields can be neglected and thus the magnetic force     becomes 
 

      (   )        
                                  (4)                

  is the electrical conductivity of the fluid 

The Cauchy stress tensor for a fourth grade fluid which satisfies the constitutive equation is  
 

                   
   

 
(         )   

 
(    

 )    
 
   

 
 
(         )    

 
    

 
  

   
 
(    

    
   )   

 
(    )    

 
(    )  

  

[ 
 
(    )   (      )]                                                                                           (5)  

Where P is pressure, I is the identity matrix,   is the viscosity, 

                                              are the material parameters; 

                are Rilvlin-Ericksen tensors .The tensors are defined as  
 

    (  )  (  )   (6) 

    
      

  
     (  )  (  )                                                                      (7) 

Where   is the gradient operator, T denotes the transpose of the resultant matrix. For the 

model (5) above, when                     , the fluid is Newtonian. If      

      and     ; it is equivalent to second grade fluid; if            and     , it 
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is equivalent to the third grade fluid and if                    ; then it is  

equivalent to a fourth grade fluid.   

 For the fourth grade fluid flow past a porous vertical plate with suction or injection, 

the x and y-axes are respectively chosen to be parallel and normal to the plate while the 

velocity field depends on y only. The complete sets of governing equations for the fourth 

grade fluid flow in the presence of magnetic field are: 
 

 div     (8) 

  
  

  
  div       (9)  

 

where    denotes fluid density 

We seek a velocity field   of the form 

   ( ( )      )                                (10) 

Where  ( ) represent the fluid velocity field in the   direction,      is the suction 

velocity and      is the injection velocity. The velocity field satisfies the continuity eq. 

(8). Thus, the disturbance in the fluid is a function of   

Using eqs. (6), (7), (8) and (10), eq. (5) gives stress components as follows 
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 (13) 

                                                                                                            (14) 

                                                                       (15) 

         ,         ,         (16) 
 

Substituting equations (11-16) in equation (9) gives 

     
  

  
  

   

        
   

        
    

     (     ) (
  

  
)

    

        
    

     

         (                       )  
 

  
(

  

  
)

    

     (17) 

The boundary conditions on u are 

  ( )                                                                                        (18)                           

  ( )       
   

                                          (19) 
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where    is the mainstream velocity,  is the second grade parameter,   is the third 

grade parameter and   is the fourth grade parameter. 

Introducing the following non-dimensional quantities  

   
 

  
    

   

 
      

  

  
      (20)                                          

Using (20) in (17) - (19), then the governing equation is obtained as 

 
   

      
  

  
     

   

        
    

     (
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            ( 
  

  
(

   

   )
 

 (
  

  
)

    

   )                  (21) 

 

with the dimensionless boundary conditions 

  ( )             ( )     
   

                            (22) 

The dimensionless parameters in eq. (21) are  

   
    

 

        
    

 

        
    

 

      
 (     )  

 

       (                

          )
  

 

           (23) 

The fifth order differential eq. (21) subject to the boundary conditions (22) is solved using 

Homotopy Perturbation Method (HPM). 

 

3.1. Homotopy perturbation method and convergence 

 

Consider a system of nonlinear differential equations given as 

        0)()(  rfUA ,                               (24) 

with the boundary conditions 

  (  
  

  
)                                                 (25)   

where A is a general differential operator, B is a boundary operator,  ( ) is a known 

analytical function and   is the boundary of the domain  . 

The operator A can be divided into two parts, L and N, where L is a linear operator, N is a 

non-linear operator. Then, eq. (24) can therefore be written as  
 

  ( )   ( )   ( )    (26) 

By the Homotopy technique, an homotopy  (   )           can be constructed 

which satisfies 

  (   )  (   )  ( )   (  )     ( )   ( )             (27) 

Or 

  (   )   ( )   (  )    ( )     ( )   ( )              (28) 
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In eqs. (27) or (28),         is an embedding parameters,   is an initial approximation of 

(24) which satisfies the boundary condition. 

Also, from eqs. (27) or (28), 

  (   )   ( )   (  )   or (   )   ( )   ( )    (29) 

The changing process of p from zero to unity is like  (   ) changing from    ( ) to 

 ( ). This is referred to as Homotopy in topology. Using the embedding parameter p as a 

small parameter, the solution of eq. (27) or (28) is assumed to be written in power series 

as  

                 (30) 

It should be noted that all the values of p are between 0 and 1 but p=1 produces the best 

result. Therefore, setting p=1, results in the approximate solution of (24) gives 
 

                      (31) 

The convergent series (31) is a combination of Homotopy and Perturbation Methods. 

Hence, the method is called Homotopy Perturbation Method (HPM). 

According to Homotopy Perturbation Method (HPM), one can construct a homotopy for 

eq. (21) as  
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   ]    (32) 

The power series of velocity field is given as  

                                                 (33)  

Then, substituting eq. (33) into eq. (32) using perturbation method yields 
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   )                                      (37) 

The boundary conditions for Eqs. (34)-(37) are  

   ( )                ( )     
    

                               (38)

   ( )                ( )     
    

                             (39)

   ( )                ( )     
    

                              (40) 

   ( )                ( )     
    

               ( )             (41)     

Solving eq. (34) and applying the boundary condition (38) results gives 

   ( )  
  

   
   

   
   

   
  

                                       (42) 

Solving eq. (35) and applying the boundary condition (38) gives 

   ( )  

(    )   

     
 (      )      

   
 (      )   

   
(     ) 

     

 
 (       )   

     
 (       )      

  

   
 
 (      )      

   

   
 (      )       

 (      )   

  

     (43)          

Also, solving eq. (36) and applying the boundary condition (40) gives 
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In the same way,   ( ) in eq. (37) is obtained using the boundary conditions (41) as    



494 Unsteady MHD Fourth Grade Fluid Flow 

 

  3
( )  

(    )   

    
  

(    )   

    
 

 (      )      

  
 

 (       )   

  
 

(     ) 

    
 

        
 

 (       )   

     
 (       )      

  

  
 

 
 (      )      

   

  
 

 (      )       
 (       )   

  

  

 (      )   

  
 

        
 (      )   

  

 (      )     

   
 (      )   

    
(     ) 

    

(     ) 

     

        
 

 (      )   

     
 (        )   

  

   
 

 (        )   

   

   
 (      )    

 (       )   

   

   

         
 (      )    

 (         )   

   

  
 

(     )
 

    

(     ) 

     
 
 (        )  

 

     
  (        )

 
 
 

  

   

         
 
 (        )

 
 
 

   

    (45)  

Other subsequent solutions are too long to be displayed in this paper and so are in the 

simulated results shown graphically in the next section. 

 

4. Numerical Results and Discussion  

 

There is an excellent agreement when the results of the Homotopy Perturbation Method 

(HPM) of the present work in the absence of unsteady parameter, slip and convective 

boundary conditions is plotted graphically in Fig. 2 using the default values       

                                       and compared respectively with the 

numerical method and new analytical solution of results of Hayat [19] and Yususoy [18]. 

 Fig. 3 shows the effects of suction parameter 0V  on the velocity profile. Suction 

decreases the flow velocity at the surface of the plate while injection increases the flow 

velocity at the surface of the plate as shown in Fig. 4. It was shown that velocity profile 

decreases with increase in suction parameter because momentum boundary layer thickness 

decreases with a rise in suction velocity. The damping effect of suction on the fluid flow 

is attributed to the fact that the heated fluid is being pushed towards the plate with the 

action of the buoyancy force to resist the fluid flow as a result of high influence of 

viscosity. On the other hand, injection parameter enhances velocity distribution with the 

boundary layer. These results reveal that suction on the plate can be used to control the 

boundary layer thickness. 

 Fig. 5 shows the influence of magnetic field parameter M on the velocity profiles. It 

was observed that the velocity profiles decreases with increase in the values of the 

magnetic field parameter M. The imposition of magnetic field in an electrically 

conducting fluid induces a drag-like force known as Lorentz force on the flow field which 

acts against the fluid flow and slows down its motion. Thus, Lorentz force increases as 

magnetic field parameter M increases and so dampens the velocity profiles. The presence 

of magnetic field reduces the velocity throughout the boundary layer which is in 

conformity with the fact that the Lorentz force (magnetic force) acts as a retarding force 

which significantly reduced the momentum boundary layer thickness. 
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 In order to describe the influence of the third grade parameter
1 and fourth grade 

parameter  on the flow model, the velocity profiles have been plotted in Figs. 6 and 7. 

The results revealed that both third grade
1  and fourth grade parameters have opposite 

roles on the structure of the velocity. Increase in third grade parameter
1  decreased the 

velocity field which indicates the shear thickening behavior of the fluid. However, 

increase in fourth grade parameter    
 increased the velocity profile which indicates the 

shear thinning property of the fluid. In Fig. 8, the fluid velocity decreases as second grade 

parameter increases. Table 1 shows the effect of the various embedded flow parameters on 

 ( )          ( ). Table 1 shows that as the distance from plate increases, the fluid 

velocity increases which satisfy the boundary condition and shows an excellent agreement 

with the Homotopy Perturbation Method (HPM) of the present work and numerical 

methods by Yurusoy [18]. 

 
Table 1. The results of Homotopy Perturbation Method (HPM) of the present work and Numerical 

Method for  ( ) and   ( ) of Yurusoy [18] in literature. 
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Fig. 2. Comparison of HPM solutions and Runge-Kutta solution with Hayat [19] an Yurusoy [18].  

 
Fig. 3. Velocity profiles for varying   .                 Fig. 4. Velocity profiles for varying   . 

 

 

          Fig. 5. Velocity profiles for varying M.                 Fig. 6. Velocity profiles for varying   . 
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  Fig. 7. Velocity profiles for varying  .                         Fig. 8. Velocity profiles for varying  .  

5. Conclusion 

 

This work investigates and analyses a mathematical model and solution for an unsteady 

Magnetohydrodynamic fourth grade fluid flow over a vertical plate in a porous medium 

with magnetic and suction/injection parameters effects. The impact of dimensionless 

second, third and fourth grade parameters with the effects of magnetic field and 

suction/injection parameters on the velocity field are displayed graphically and discussed. 

The system resulted in a higher order nonlinear differential equations governing the flow 

model with some boundary conditions which were solved via Homotopy Perturbation 

Method and the results show that: 

 

1. Velocity profile decreases with increase in suction parameter at the surface of the 

plate thereby decreasing the momentum boundary layer. 

2. Injection increases the flow of the velocity at the surface of the plate because it 

enhances velocity distribution in the boundary layer. 

3. The damping effect of the suction velocity on the fluid flow is due to boundary force 

of high influence viscosity which resisted the heated fluid flow towards the plate. 

4. The presence of magnetic field reduces velocity throughout the boundary layer 

because the Lorentz force acts as a retarding force and significantly reduced the 

momentum boundary layer thickness. 

5. Fluid velocity decreases with increase in second grade parameter. 

6. Increase in third grade parameter decreases the velocity field due to thickening 

behavior of the fluid. 

7. The velocity profile increases as the fourth grade parameter increases due to shear 

thinning property of the fluid. 

8. As the distance from the plate increases, the fluid velocity increases which satisfy the 

boundary condition. 
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