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Abstract 

Electronic states of a single electron in doubly eccentric cylindrical quantum wire are 

theoretically investigated in this paper. The motion of electron in quantum wire is free along 

axial direction in a cylindrical quantum wire and restricted in annular regions by three 

different parallel finite cylindrical barriers as soft wall confinement. The effective mass 

Schrödinger equation with effective mass boundary conditions is used to find energy 

eigenvalues and   corresponding wavefunctions. Addition theorem for cylindrical Bessel 

functions is used to shift the origin for applying boundary conditions at different circular 

boundaries. Fourier expansion is applied after addition theorem to get wavefunctions in 

analytical form. A determinant equation is obtained as a result of applications of effective 

mass boundary conditions which roots gives energy of various electronic states. The lowest 

root gives ground state energy. The variation in ground state energy with eccentricity is 

obtained numerically and presented graphically. Electronic states in massive wall 

confinement and hard wall confinement is further obtained as limiting behavior of the states 

obtained in soft wall confinement. The knowledge of electronic states in such cylindrical 

hetrostructures semiconductor material can lead to improve the efficiency of many quantum 

devices. 
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1.   Introduction 

The semiconductor hetrostructures are very useful in construction of many quantum 

devices like quantum laser where active medium is a quantum wire or dot. A lot of 

properties of quantum wire has been studied. Optical properties of a cylindrical quantum 

wire has been investigated theoretically to study variation of absorption coefficient and 

refractive index [1,2]. Binding energies of impurity in quantum dot structures have been 

studied as function of geometry [3]. Effect of shape and size on electron energy spectrum 
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in various shaped quantum structures have been investigated [4-8]. The properties of 

quantum wire and dots with cylindrical geometry are of special interests among various 

researchers due to its wide range of applications [9-15]. Theoretical study of electrical 

properties of single eccentric cylindrical structures with C1v and C∞v symmetries have 

been studied [16]. We have investigated electrical properties of a new structure-doubly 

eccentric cylindrical quantum wire. There is no report on electronic states of a doubly 

eccentric cylinder in nano regime to our knowledge. A doubly eccentric cylindrical 

quantum wire consists of two eccentric cylindrical quantum wire nested inside a 

cylindrical quantum wire of larger radius. A cross-section of such quantum wire is shown 

in Fig.1. Such doubly eccentric cylindrical wire in nano regime can help to develop 

semiconductor material to enhance the efficiency of many quantum devices.  The 

electronic states in a doubly cylindrical hetrostructures with C2v symmetry in soft wall 

confinement (SWC) are studied theoretically in this paper. As its limiting behavior, the 

corresponding electronic states in hard wall confinement (HWC) and massive wall 

confinement (MWC) are also obtained. An exact solution of effective mass Schrödinger 

equation is obtained by using addition theorem for shifting origin of cylindrical Bessel 

functions in hetrostructures to satisfy corresponding boundary conditions for 

wavefunctions. The validity of addition theorem in doubly eccentric cylinder imposes a 

restriction on the range of its eccentricity but that doesn’t lead to an issue as allowed range 

of eccentricity to cover most of practical problems.    

      Section 2 of this paper presents general geometrical structure of the problem and its 

exact solution in soft wall confinement (SWC). At first, the solution of effective mass  

Schrödinger equation is obtained in terms of cylindrical Bessel functions for various 

regions. Effective mass boundary conditions are then applied across each pair of 

boundaries. Fourier expansion is applied on the expression obtained after applying 

appropriate boundary condition to get the solution in analytical form. As a result, these 

give a set of infinite simultaneous equations which is discussed in section 3. A 

determinant equation is obtained for non-trivial solution of the infinite simultaneous 

equations. The roots of this determinant equation give various energy eigenvalues. The 

lowest root of determinant equation is obtained numerically to get ground state energy. 

The separation between axes of two eccentric cylinders is termed as eccentricity of 

structure. The ground state energy is calculated by varying eccentricity of structure. The 

result in variation of ground state energy with eccentricity is presented graphically. The 

corresponding limiting solution for massive wall confinement (MWC) and hard wall 

confinement (HWC) is discussed in section 4. Section 5 presents concluding remarks.  

 

2. Solution 

 

Fig. 1 shows annular cross-section of a doubly eccentric cylindrical structure. The length 

is along Z–axis which is perpendicular to plane of figure. The axes of region I, II and III 

are parallel. Radii of regions I and III are ‘a’ and that of region II is ‘b’. The separation 

between centres of region II and III is d1 and that between I and II is d2. In the structure, it 
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is kept d1 = d2 = d so that structure has C2v symmetry which is more useful in physical 

applications. However, this methodology can be used to study the electronic states in 

doubly eccentric cylinder with d1 ≠ d2 as well. The parameter ‘d’ represents separation 

between axes of inner cylinder and is called eccentricity.        

 

 

 

 

 

 

 

Fig. 1. Cross-section of a doubly eccentric cylinder. 

 We have considered a system in which an electron is free to move along axis of 

cylinder in region II and its annular motion is confined by different cylindrical barriers 

shown as regions I, III and IV in Fig. 1. Using the theory of effective mass approximation, 

each region can be considered as region of constant potential with corresponding effective 

mass of the electron. Let effective mass of the electron in 
thl region is *,lm l  1, 2, 3 and 

4. We have set the value of potential energy of region II equal to zero as the reference of 

potential energy. Let the barrier potential in 
thl region is  0 ,lU l  1, 3 and 4.Taking 

1 1 1( , )z  as cylindrical polar co-ordinates with respect to origin O1, the effective mass 

Schrödinger equation [17-18] for hetrostructures is given as 
 

 
2

1 1 1 1 1 1 1 1 1*

1 1 1

1
( , ) ( , ) ( , )

2 ( , )
U z z E z

m z
       

 

  
         

  

 (1)                              

For uniform distribution of effective mass *

lm in the 
thl  region, 

* *

1 1 1( , )l lm z m   , the 

Eq. (1) takes the form 

 
 *

2

1 1 1 1 1 12

2
( , ) ( , )

m E U
z z     


      (2)     

In region I, the solution of Eq. (2) with origin at O1 comes as 

       1

1 1 1 1 1 1 0

0

, sin i z

I m m

m

z A I k m e      




    (3) 

 with
 *

1 12 2

1 2

2m E U
k 


    (4)       

where mA  are unknown constants,  1 1mI k  is modified Bessel function of first kind,  is 

axial wave number and
0 0   gives odd parity  and 

0
2


   gives even parity. 

In region II, the solution of Eq. (2) with origin at O1 comes as 
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          1

1 1 1 2 1 2 1 1 0

0

, sin i z

II m m m m

m

z B J k C Y k m e       




      (5)                                                 

 with 

*
2 22
2 2

2m E
k    (6)                                                                                                                               

where
mB  and 

mC are unknown constants,  2 1mJ k  is Bessel function of first kind  and 

 2 1mY k   is Bessel function of second kind. 

In region III, the solution of Eq. (2) with origin at O1 comes as 

         1

1 1 1 3 1 3 1 1 0

0

, sin i z

III m m m m

m

z D I k E K k m e       




     (7)                                      

with
 *

3 32 2

3 2

2m E U
k 


    (8)                                                                                                                        

where 
mD and 

mK are unknown constants ,  3 1mI k  and  3 1mK k  are modified Bessel 

function of first and second kind respectively.                                 

In region IV, the solution of Eq. (2) with origin at O1 comes as                          

      1

1 1 1 4 1 1 0

0

, sin i z

IV m m

m

z F K k m e      




    (9)                                                      

with 
 *

4 42 2

4 2

2m E U
k 


    (10)                                                                                                      

Eq. (3) to Eq. (9) give the wavefunctions with some unknown constants in region I to 

IV respectively. These unknown constants and hence energy eigenvalues can be 

calculated using the fact that  and 
*

1

m
 (effective mass boundary condition) has to be 

continuous at each of the boundaries [19]. To apply boundary conditions across boundary 

between region I and II, wavefunctions I and II  in terms of  1 1 1, z  with origin at 

O1 is good enough but for boundary between region II and III, wavefunctions II and 

III  should be re-written in terms of new cylindrical polar co-ordinates  2 2 2, z 

with respect to origin at O2. Again for boundary between region II and IV, wavefunctions

II  and IV   should be re-written in terms of  , z   with respect to origin at O. 

Addition theorem has been used to write the  mathematical expression of wavefunction 

with origin shifted at ‘O’ or ‘O2 from ‘O1’ as required during application of boundary 

conditions [20-23]. 

2.1. Boundary conditions between region I and II 

 

The two boundary conditions required to be satisfied at 1 a  for all 1  and 1z are 

 I II   (11)                                                                                                                                  
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 and * *

1 2

1 1
I II

m m
     (12)                                                                                                               

Substituting Eq. (3) and Eq. (5) into Eq. (11) gives for each m 

 
   

 
2 2

1

m m m m

m

m

B J k a C Y k a
A

I k a


  (13)                                                                                                          

and substituting  Eq. (3) and Eq.(5) into Eq. (12) gives for each m 

  
 

1, 2

1 2,

m

m m

m

H k k
B C

G k k
  (14)                                                                                                                   

where 

          * *

1 2 1 2 1 2 2 1 1 2*

1

1
,m m m m mG k k k m I k a J k a k m I k a J k a

m
    

 (15) 

and 

          * *

1 2 2 1 1 2 1 2 1 2*

1

1
,m m m m mH k k k m I k a Y k a k m I k a Y k a

m
    

 (16)                                               

2.2. Boundary conditions between region II and III 

 

 

 

 

 

 

 
Fig. 2. For shift of origin from O1 to O2. 

 

 If  2, 2 2, z   is cylindrical polar co-ordinate with origin at O2, the boundary conditions 

required to be satisfied at 2 a    for all 2  and 2z are 

 
II III   (17)                                                                                                                                        

 and
* *

2 3

1 1
II III

m m
     (18)  

To apply boundary conditions given by Eq. (17) and Eq. (18), we need to shift origin from 

O1 to O2 using addition theorem. Within the range of d as 
2

a
d b a   , the use of 

addition theorem with 
1    (in Fig.2) gives 

1 

II 
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             
1

2 1 1 0 0 2 12 2 2 2 0sin 1 cos 2 sin
p

m

m m p p

p

Z k m Z k d J k p      
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


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    ,  (19) 

where Z J orY .

             
1

3 1 1 0 0 3 12 3 2 2 0sin 1 cos 2 sin
p

m
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p
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





     (20) 

and                
1

3 1 1 0 0 3 12 3 2 2 0sin 1 cos 2 sin
p

m p

m m p p

p

I k m I k d I k p      
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





      (21) 

Using Eq. (5) and Eq. (19), the wavefunctions in region II about origin O2 comes as 

 

            2

2 2 2

1

0 2 12 2 12 2 2 2 0

0

,

1 cos 2 sin

II

p
m i z

m p m m p m p

m p

z

B J k d C Y k d J k p e 

  

   




 

 

 
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 (22) 

and using Eq. (20), Eq. (21) and Eq. (7), the wavefunction in region III about origin O2 

comes as  

 

              2

2 2 2

1

0 3 12 3 12 3 2 2 0

0

,

1 cos 2 sin

III

p
m p i z

m p m p p m

m p

z

D I k d E K k d I k p e 

  

   






 

 

    
  

 (23) 

Substituting the II and III given by Eq. (22) and Eq. (23) into boundary conditions 

given by Eq. (17) and Eq. (18) and then expanding  2 0sin p   as Fourier series in  

2 and then using Eq.(14) yields a set infinite simultaneous equations in Cm’s as 

 
0 0

0mn m

n m

P C
 

 

  (24) 

where 

          1, 2 2, 12 1, 2 2 12 2 3,mn m mn m mn nP H k k k d G k k k d U k k      (25)  

 with          * *

2 3 2 3 2 3 3 2 2 3,n n n n nU k k k m J k a I k a k m J k a I k a      (26) 

        1

2 12 2 12 0 2 12( 1) cos 2m

mn n m n mk d J k d J k d 

 
    

 (27)  

 and        1

2 12 2 12 0 2 12( 1) cos 2m

mn n m n mk d Y k d Y k d 

 
    

 (28) 

2.3. Boundary conditions between region II and IV 

If  , , z  is cylindrical polar co-ordinate with origin at O, the boundary conditions 

required to be satisfied at b  for all  and z are 

 II IV   (29)                                                                                                                                             



R. Kumar et al., J. Sci. Res. 12 (4), 473-483 (2020) 479 

 

 

 

 

 

 

 
Fig. 3. For shift of origin from O1 to O2. 

 

 and * *

2 4

1 1
II IV

m m
     (30)                                                                                                                               

To apply boundary conditions given by Eq. (29) and Eq. (30) between region II and IV, 

II and IV  need to be written in cylindrical polar co-ordinates  , , z with respect to 

origin at O. Using addition theorem, the relation between Bessel functions in co-ordinates   

 , , z  and  1 1 1, z   with 1     (in Fig.3) comes as 

          2 1 1 0 2 2 0sin sin
p

m p p m

p

Z k m Z k J k d p     






   ,                (31)  

where Z J orY  

 and          4 1 1 0 4 3 0sin sin
p

m p p m

p

K k m K k I k d p     






    (32)                                        

Using Eq. (5) and Eq. (31), wavefunction in region II about origin O comes as 

 
 

       2 2 2 0

0

,

sin

II

p
i z

m p m p p m

m p

z

B J k C Y k J k d p e 

  

   




 

 

    
 (33)                        

And, using Eq. (7) and Eq. (32), the wavefunction IV about origin O comes as  

        4 4 0

0

, sin
p

i z

IV m p p m

m p

z F K k I k d p e      




 

     (34)                                                    

Substituting the II and IV given by Eq. (33) and Eq. (34) into boundary conditions 

given by Eq. (29) and Eq. (30) and expanding  0sin p   as Fourier series in   and 

then using Eq. (14) yields a set infinite simultaneous equations in Cm’s as 

 

0 0

0mn m

n m

Q C
 

 

  (35)                                                                                            
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where 

          1, 2 2, 4 1, 2 2 4 2,mn m n m n mnQ H k k S k k G k k T k k W k d   
 (36)                                     

with          * *

2 4 2 4 2 4 4 2 2 4,n n n n nS k k k m J k b K k b k m J k b K k b      (37)                          

          * *

2 4 2 4 4 2 4 2 4 2,n n n n nT k k k m K k b Y k b k m K k b Y k b      (38)                                                    

and        
1

2 2 0 21 cos 2
m

mn n m n mW k d J k d J k d


     (39)                                                    

3. Results and Discussion 

 

The Eq. (24) and Eq. (35) are infinite simultaneous equation in Cm’s and can be expanded 

as 

 

11 1 21 2 31 3

12 1 22 2 32 3

13 1 23 2 33 3

................. 0

................. 0

................. 0

.........................................................

................................

P C P C P C

P C P C P C

P C P C P C

   

   

   

11 1 21 2 31 3

12 1 22 2 32 3

13 1 23 2 33 3

..........................

................. 0

................. 0

................. 0

...........................................................

Q C Q C Q C

Q C Q C Q C

Q C Q C Q C

   

   

   

 

For non-trivial solution of Cm’s, the determinant of co-efficient in above equations should 

be equal to zero. Therefore,     

 det 0
P

Q
  (40) 

Where, P and Q  are transpose of corresponding matrices given by the Eq. (25) and 

Eq. (36) respectively. For a given SWC, the solution of Eq. (38) will be a polynomial 

equation in energy eigenvalues E which various roots will give energy eigenvalues of the 

system. By increasing the order of determinates, the roots converges to specific values. 

The lowest root gives ground state energy. The lowest root is obtained numerically which 

converges to third decimal places for 10×10 determinant entries in Eq. (40). Considering 

region II is made of GaAs and all other regions I, III and IV are made of Ga0.7Al0.3As, we 

have taken
* * * * * 32

1 3 4 2 21.4 , 5.73 10m m m m m kg     . For fixed radii a = 6 nm 

and b = 20 nm, barrier potential energies U1 = U3 = U4 =190 meV and setting    ,  the 

ground state energy is calculated by solving numerically Eq. (40) with 10×10 entries for  

varying eccentricity d = 4 nm to 13 nm (within allowed range for d according to used 

addition theorem in methodology). The result is shown graphically in Fig. 4. The decrease 

in ground state energy with increase in eccentricity can be justified as result of 

Uncertainty principle.  
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Fig. 4. Variation of ground state energy with eccentricity. 

4. Limiting Behavior 

 

4.1. Massive wall confinement (MWC) 

 

The energy eigenvalues of the system under MWC can be obtained by applying the limit  
*

*

2

,im
i

m
  1, 3 and 4 during obtaining the solution  in section II for SWC. Boundary 

conditions will now ensure that the quantity 
*

2

1
0II

m
  at each boundary between 

different regions [24]. Repeating the same procedure as in Section II with limit 
*

*

2

,im
i

m
  1, 3 and 4, yields two sets of infinite simultaneous equations in Cm

’
s as 

 

0 0

0MWC

mn m

n m

P C
 

 

  (41)                                                                                                                         

 

0 0

0MWC

mn m

n m

Q C
 

 

  (42)                                                                                                                         

where 

           
          

 

1

2 2 12 0 2 12

2
1

2 2 12 0 2 12

1 cos 2

1 cos 2

m

m n m n m
MWC

mn n
m

m n m n m

J k a Y k d Y k d

P J k a

Y k a J k d J k d







 



 

   
  
 

    

 (43) 

 and          2 2 2 2 2

MWC

mn m n n m mnQ J k a Y k b J k b Y k a W k d      
 (44)  
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 with        
1

2 2 0 21 cos 2
m

mn n m n mW k d J k d J k d


     (45) 

For non- trivial solution of Eq. (41) and Eq. (42),  

 det 0
MWC

MWC

P

Q
  (46) 

Where,
MWCP  and 

MWCQ is transpose of the corresponding matrices given by Eq. (43) 

and Eq. (44) respectively.          

 
4.2. Hard wall confinement (HWC) 

 

Under the limit that barrier potential energies (potential energies of region I, III and IV) 

are infinite, wavefunction 
II should vanish at each of the boundary between different 

regions. Repeating the same procedure discussed in the section II under the boundary 

condition 0II   at each of the boundaries yields two sets of infinite simultaneous 

equations in Cm
’
s as 

 

0 0

0HWC

mn m

n m

P C
 

 

  (47)                                                                                                              

0 0

0HWC

mn m

n m

Q C
 

 

  (48)                                                                                                                     

where 

 
          
          

 

1

2 2 12 0 2 12

2
1

2 2 12 0 2 12

1 cos 2

1 cos 2

m

m n m n m
HWC

mn n
m

m n m n m

J k a Y k d Y k d

P J k a

Y k a J k d J k d







 



 

  
 


 
    

 (49)                                                              

 and          2 2 2 2 2

HWC

mn m n n m mnQ J k a Y k b J k b Y k a W k d   
 (50)                                                                                                     

with        
1

01 cos 2
m

mn n m n mW x J x J x


     (51)                                                                            

For non- trivial solution of Eq. (47) and Eq. (48),  

 det 0
HWC

HWC

P

Q
  (52)                                                                                                                  

Where,
HWCP  and 

HWCQ is transpose of the corresponding matrices given by Eq. (49) 

and Eq. (50) respectively.           

5. Conclusion 

 

A general technique to study electronic states in doubly eccentric cylindrical quantum 

wire for soft wall confinement has been presented. Massive wall confinement and hard 
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wall confinement is presented as its limiting case. The ground state energy of the structure 

is calculated. The variation in ground state energy with eccentricity is obtained 

numerically. The ground state energy is found to be decreases with increase in eccentricity 

of structure. One can similarly find numerically other higher roots of determinant equation 

to study excited states as well. The discussed method can be also further used to study 

having more than two similar or different cylindrical barriers nested in it in nano regime.       
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