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Abstract

In this article, the concept of cyclic weakly generalized contraction mapping of Ciric type
has been introduced and the existence of a fixed point for such mappings in the setup of
complete metric spaces has been established. Result obtained extends and improves some
fixed point results in the literature. Example is also given to show that class of contraction
mappings introduced in the paper is strictly larger class than the class of mappings used in
the literature and thus ensures wider applicability of the result by producing the solutions to
new problems.
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1. Introduction

It is well known that fixed point theorem of Banach is one of the main results of analysis.
It is widely used in many fields of mathematics. Due to its importance, many authors have
generalized this result in various directions [1-14]. Ciric [1] introduced the concept of
generalized contractions.

Definition 1.1. Let (X, d) be a metric space. If T: X —> X is such that for all x,y eX,
there exist non-negative real numbers q(x, ), r(X,y), s(x,y) and t(x, y) such that

SUp A (%, y)+r(xy)+s(xy)+2t(x y)} =A<1
X,y eX

and
d (K, Ty) < A% y)d(x Y)+1 (%) d(x T)+5 (% Y)d(y, ) +(x, y) [d(x Ty) +d (¥, TX)
holds for all X,y € X then T is said to be a generalized contraction.

Ciric [1] proved that every generalized contraction in a complete metric space has a fixed
point.
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The class of generalized contractions include the Banach’s contractions and the
contractions introduced by Kannan [3] and Chatterjea [4]. Alber and Guerre-Delabriere
[6] introduced the concept of weakly contractive type mapping and proved the existence
of fixed point for such mappings in Hilbert Spaces. Weakly contractive mappings include
contractions as a special case. Many fixed point results were proved using the concept of
weakly contractions [3-13]. Kirk et al. [2] introduced the concept of cyclic contractions.

Definition 1.2: [2] Let X be a nonempty set and T: X —> X be a map.

i=1
b) T(A)SA T(A)SAgrn T(Ap ) S Ay T(AG) S AL
) 3ke(0,))>d(Tx,Ty)<kd(x,y) forany xeA, yeA,,, i=12,..m where
Am+l = Al
In this case T is said to be cyclic contraction.
Karapinar et al. [5] introduced generalized cyclic weakly Chatterjea type contractions.

Definition 1.3: [5] Let (X,d) be a metric space and m be a natural number.

i=1
a generalized cyclic weakly Chatterjea type contraction if

@y :Ln] A is acyclic representation of 'Y with respectto T
i=1
(b) Forany xe A, ye A, i=12.m,
d(Tx,Ty) <ea[d (X, TX) +d(y,Ty) + d(x, Ty) + d(y, Tx)]
—y(d(x,Tx),d(y, Ty),d(x,Ty),d(y, Tx)),
Where A=A and y:[0,00)*—>[0,00) is lower semi-continuous map satisfying
w(t b, t,t,)=0 if t, =t, =t; =t, =0 and a<(0,1/4).
Karapinar et al. [5] proved the following theorem.

Theorem 1.4: [5] Let (X,d) be a complete metric space and m be a natural number.

i=1
cyclic weakly Chatterjea type contractions then T has a unique fixed point y ¢ ﬁ A -
i=1
In this paper, cyclic weakly generalized contraction mappings of Ciric type have

been introduced and the existence of fixed point for such maps has been proved. Example
is also given to show that our result is a generalization of the result in Karapinar et al. [5].
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2. Main Results

The concept of cyclic weakly generalized contractions of Ciric type has been introduced
and a fixed point result for such contractions in the framework of complete metric space
has been derived.

Let @ denote all monotonically increasing continuous functions :[0,00) —[0,00) with

u(t)=0if t =0 and ¥ denote the set of all lower semi-continuous maps y :[0,)° —[0, )
with y (t,,t,,t,,t,,t:)=0 if t =t, =t, =t, =t, =0.
Definition 2.1: Let (X, d) be a metric space and m be a natural number, A, A,... A

nonempty subsets of X and :LmJAﬁ is such that for all x,y e X, there exist non negative
i=1

real numbers q(x, Y),r(X,y),s(x,y) and t(x,y) such that

sup {a(x,y) +r(xy)+s(xy) +2(xy)}=A<1.
X,y eX

A(d (X, Ty)) < @(x, y) d (%, V) + 1 (% y)d (6, TX) +5(x, y) d (Y, Ty) +E(x, Y) (d (x,Ty) +d (Y, X))
—y (d(x,y), d(x,Tx),d(y,Ty),d (x,Ty,).d(y,Tx))

forany xe A, ye A, i=12.mwhere A, =A,ucdand y cv.

Then T is said to be a cyclic weakly generalized contraction mapping of Ciric type.

Theorem 2.2: Let (X,d) be a complete metric space, m be a natural number,

A A,...A, be nonempty closed subsets of X and y :LmJ A Suppose thatT :Y —Y isa
i=1
cyclic weakly generalized contraction mapping of Ciric type. Then T has a unique fixed
point , ﬁ A-
i=1
Proof: Let X, € X .Define a sequence (X,)in X as x,,, =Tx,,n=0,12..
If forany N, X,,; =X, then X, will be the fixed point and hence the result. Therefore, it

is assumed that X, ; # X, forany n=0,1,2...

n+l

As y :LmJ A therefore for any n > O there exists i e{1,2,..m}such that x_, e A and
i=1
Xn € Ain+1'
By definition 2.1 we have,
(A (Xpq X ) = (d (1%, X)) < (0K X0 ) A (X X02) + 1(Xq 0 X0 )d (X, TX)
+S(X, s X ) (X, TX ) +H(X, s X )(A (X, TX, ) +d (X, TX,)))
—w(d(X,, X, 1), d(X,, TX,),d (X, 4, TX,4),d(X,, TX, ), d(X, 4, TX,))
<u(Q(X,, X, )d (X, X, ) + (X, X, )d(x,,TX,)

+S(X, s X ) (X, TX ) +1(X,, X)) (A (X, TX ) +d (X, 4, TX))).
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Since g is monotonically increasing function, for alln =1, 2, ..., therefore ,
d (Xoy10 %0) <A, X)) d (00 X0 q) + 1 (X, X, 1)d(xn,><n+1)
+5 (X X01) A (X1 %) + (X0 X, (A (X0, %) +d (X0 %))
<A(Xq, X0) A (X0 X0 0) + 1 (X X0 1) A (%, Xo0)

+S(Xn’ Xn—l)d(xn 1 n) +t(xn’xn 1) (d (Xn 1 n) + d (Xnixn+1))
Consequently

d(Xn+1’ n) [1 r(Xn' n—l) t(Xn!xn 1)]<d(xn' X—l)(q(xn’ n—1)+s(xn’ n—1)+t(xn’ n—1))

(2.1.2)
Since 4<1, from q(X,, X, )+ (X,, X, ;) +S(X,, X, ;) +2t(X,, X, ;) <A,
Therefore,
C](Xn, n_1)+S(Xn, n—1)+t(x Xn_l)Sﬂ—l’(Xn, n—l) t(Xn,Xn 1)
SA—=Ar(X,, X,4) = A (X, X, )
Which implies that
q( n-1! n)+s(xn 11 n)+t(xn 11 n) </1
1_r(Xn -1 n) t(Xn -1 n)

Thus from (2.1.1) it follows
d (Xn+l’ n) </1d(Xn,Xn l)
Repeating the above procedure n times,

d (Xn+1’ n) = ld (X Xn—:L)Sﬂ'2 d (Xn -1 n 2)</1n d (Xl’ XO)' (2'1'2)
From (2.1.2), it follows that d (X, X,) > 0as n— oo (2.1.3)

Now the sequence (Xn) will be proved to be a Cauchy sequence. For this purpose, we

prove the following claim:
For every ¢ >0, there exists a natural no. n such that if I,q = n with r —g=1(modm),

then d (x,x,
On contrary suppose there exists e >0 such that for any ne N, we can find r ,q >n
with r. —q, = 1(modm)satisfying d (x ) > €.

) <e.

T q
Now take n>2m. Then, corresponding to g >n, choose I, such that it is the smallest
integer with r, >q, satisfying r, —q, =1(modm) and d (x, ,x,) > €.

Thus d (x
By using the triangular inequality,

e<d (an ! Xrn)S d (an ! Xrn—m)+zd (Xrn—i ' Xrn—i+1) < €+Zd (Xrn—i ! Xrn—i+1) '
i=1 i=1

n+1? n) _)O
Lt d(x, X, )=€. (2.1.4)

n—oo

)<e.

rm’q

Letting N— oo and using d (x.
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Again, by triangular inequality,
Shs d (Xq"’xrﬂ)S d (X Xq +l)+d (Xq +11 'y +1)+d (Xr +17 r )

< 2d (an!an+1)+d (Xq L )+2d (Xr 'Xr +1)
Letting n— oo and using d (xnﬂ, X,) >0,
Lt d(Xq 10X, 1) = (2.1.5)

n—o
Consider
d (an lTXrn ): d (an Yxrn+1)

< d (an ’ Xrn ) + d (Xrn ' Xrn+l)

and

d (XQn’an+l)+d (Xr +11 r ) >d (Xq 1Xr )

Taking limit N—>00,

Lt d(x,,.%,)=¢€. (2.16)

n—oo
Consider
d(X Tx,)=d (X ,X, )
< d(x,, X ) +d (X, %, )
and

d (X, Xq 1)+ (Xg 0%, ) = d(X, X, )

qp+1?

Taking limit n—oo,
Lt d(x, ,TX, ) =€. (2.1.7)

Now as X, and X, lie in different adjacent set A and A, for certain 1<i<m, using
the fact that T is a cyclic weakly generalized contraction mapping of Ciric type,
w(E)=< p(d (X 10X 1)
=u(d(Tx, ,TX, )
Sy(q(xq" )d(an, r)+r(xq X, )d(xq X, )
+s(xq, r)d(x JTX, )+t(an, r)(d(xqn TX, )+d(x qun))
—p(d(x, % ), d(X, TX, ). d (X, TX, ),d (X, ,TX, ), d(X, ,TX, )
(00 X, )80 3, )+ Ty ) (%, Xy 1)
+8(Xg X ) (X, X 1) 20X X ) (A (X 2 X, 40) + A (XX 1))
—p (A (% % )0 Xg ) 80X X ), (R X ), 8 (X % a))- (21.8)

Taking limit superior both sides in (2.1.8), using (2.1.3), (2.1.4-2.1.7), continuity of , and
lower semi continuity of ,
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p(E)<Tim (A, X, )0, %, )+ T (X %, )d (X % 1)
+8(Xq 2 X, A (X, X 1) +HE(Xg X ) (A (X X 1) +d (X, X, )
~pr(d (X % .8 (X Xq )8 (% X ) (X Xy ) 8 (X, X))
= u(lim a(xq, » r)(e)+||m r(Xg, r)(0)+I|m (X, + X;. ) (0)
+limt(x, X )(e+¢€))-w(<.0,0,€¢€)

= u(e (Ilmq(xq X ))+I|m 2t(xq X M) -w(s,0,0,€€)
< u(e)-w(e0,0,¢¢€).

Consequently y(<,0,0,€,€)< 0

which is a contradiction with <> 0.

Hence the claim is proved.

Now the sequence (X,,) will be proved to be Cauchy

Let > 0 be given.

By previous lemma, we can find n eN such that r,q>n,with r —g=1(modm)
d (X, %,)<€/2. (2.1.9)
Since
Lt d(x,,X,,,)=0
n—oo
Therefore, there exists n, eN such that
d(X,,X,,) <€/2m forany n>n, (2.1.10)
Assume that r,s>max {no,nl} and S>r
Then there exists ke{1,2,...,m} such that
s—r =k (modm).

Hence s—r+ j=1(modm) where j=m-k+1.
Thus we have

n+l

d (X %)< d (X, X, )+ 0 (X, 0 X, jg) ot O (X, X). (2.1.11)
Using (2.1.9) and (2 1.10) ineq. (2.1.12),
d(Xr, s)< +Ji S+mi:€_
2 "2m 2 2m

Hence (Xn) is Cauchy sequence in Y .

Since Y isclosed in X . Therefore Y is also complete and there exists xeY such that
Lt x =x

n—ow

As y =LmJAi is cyclic representation of Y with respect to T, the sequence (Xn) has
i=1

infinite terms in each A for ic{,2,..,m}. Suppose that xe A, Txe A, and a subsequence

(X, ) of (x,) with x_ <A can be taken.

By using the contractive condition,
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p(d (X, 1, TX) = p(d (Tx,, ,TX)

< u(@(%,, X)) d (X, X) +1 (X, X)d (X, , X, 1)

+5(X,, , ¥)d (%, TX) +t(x, , x)[d (X, , TX)+d(X, .;,X))

=y (d (X, ,X),d (X, s X, 1), d(X,Tx),d (X, , TX),d (X, ,1,X)).
Taking limit superior both sides and using continuity of £z and lower semi continuity of
v,
w(d (x,Tx) < p(limg(x, ,X)(0)+limr(x, ,x)(0)

+lim (X, »X)d (X, TX) +lim t(x,, ,x)(d(x, Tx)+0))

—w (0,0, d(x,Tx),d(x, Tx),0)

= p(d(x,Tx)(lim s(x, , x)+lim t(x, ,x)))
—(0,0, d(x,Tx),d(x, Tx),0)

< u(d(x, X)) =y (0,0, d(x,Tx),d(x, Tx),0).
Which is a contradiction unless d (x, Tx)=0.
Hence X is a fixed pointof T

Since Xxe Aand Tx=xeA,, = xeAforall i=12,..mie. xeﬁA..
i=1

Now we prove the uniqueness of fixed point.
Suppose X, and X, are two fixed points of T
Using the contractive condition, the continuity of £¢ and lower semi continuity of ¥/,
w(d (%, %,) = e (d (Tx, TX,)
< (9%, X,) d (%, Xp) +1(X, %,)d (%, TX,)
+5(X1, %, )d (X5, TX, ) + (X1, X, ) (d (%, TX,) +d(X;,TXy)))
—y(d (X, %), d (X, TX,), d (X5, TX, ), d (X, TX, ), d (X,,TX,))
= 1(q(%;, %) d (X, Xp) + 2t (%, X, ) d (X, X,))
=y (d (x,%,),0,0,d(x;, X;),d(Xz, %))
< p(d (X, %) —w(d (%,%,),0,0,d (%, X;),d(X;,%,))-
Which is a contradiction unless X; =X, .

Hence the main result is proved
Now consider the following example,

Example 2.3: Let X be the space of real numbers with usual metric.
Suppose A =[-10,0], A, =[0,10] and Y = A U A, Define T:Y —Y as 1y _ 23, thenit
4

2

is clear that UAi is cyclic representation of Y with respect to T. Then T is not a
i=1

generalized cyclic weakly Chatterjea type contraction because otherwise T would satisfy
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Sa[ y+—X
3 3
X+—=X y+—X

3

4
_W[ 4 4 J
forall Xxe A ,y e A, for some 0£a<% :

But X = —8, y = 8do not satisfy above inequality.
Now we see that is T cyclic weakly generalized contraction of Ciric type.
Define  :[0,00)° —[0, ) as

-3 3 3
—X+=y X+=X + + +
4 4 4

y+2yl+lx Sy
4 4

’ i ’

y+ 2y 2y
4 4

w(X y,Z,t,W)=4—10(x+y+z+t+w)

-3 3
d(Tx,Ty):‘TXJrZy‘

= 2hoy
<q(x, Y) d(x, y) + r(x, y)d(x, TX) +s(x, y) d(y, Ty) + t (%, y) (d (x, Ty) + d (y, TX))
—yp{d(x,y), d(x,TX),d(y, Ty), d(x, Ty,), d(y, TX)}
Rl

+t(x,y)( y+—X

3] 4

+

3
X+ =X
4

x+§y
4

3
=q(x, Y)[x—y[+r(x,y) Y+
1

Ux— y|+

40
1 1
=[q(x, y) —%J\x— y| +(r(x, y) _EJ

{3

; 31 1 1 1
Taking CI(X,Y):%vr(xxY):EvS(X-Y):E,t(XJ):% in (2.3.1),

+8(x,Y)

3
X+ =X
4

+ y+§y+ x+§y+ Y+ =X
4 4 4

3
X+=X
4

1 3
+ (S(x, y) - E)‘y 2 y‘

3 3
X+=yl+|y+=X | 2.3.1
PRI LA J (23.)

we get

b=y

which is true. Hence T is cyclic weakly generalized contraction of Ciric type.

However, it is obvious that every generalized cyclic weakly Chatterjea type contraction is
cyclic weakly generalized contraction of Ciric type. Thus the class of cyclic weakly
generalized contraction of Ciric type is actually a strictly larger class of mappings than the
class of generalized cyclic weakly Chatterjea type contraction.

3. Conclusion

In this paper, we introduced cyclic weakly generalized contraction mapping of Ciric type
and presented fixed point for such mapping in complete metric spaces. We gave an
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example to show that the class of these contraction mappings is strictly larger than the
class of generalized cyclic weakly Chatterjea type contractions. Results obtained in this
paper can be expanded. Also, a new more general condition can be achieved. There is also
possibility of extending the results to other spaces.
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