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Abstract 

 
We use a simple van der Waals theory, suitably extended to the solid phase and to 
anisotropic interactions, to study the phase behaviour of a system of particles with nematic 
interactions. Very rich phase behaviour is found which indicates, in particular, that the 
nematic liquid is stable only for large values of the strength of the nematic interactions. The 
isotropic liquid-nematic liquid and the isotropic solid-nematic solid transitions are always 
first-order. Additionally, we have found that the nematic liquid is thermodynamically stable 
only in a small domain of the temperature-density plane contained between two triple lines. 
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1.  Introduction 

 
The relation between the Hamiltonian of a system and the form of the resulting phase 
diagram is the central theme of equilibrium statistical mechanics [1,2]. For  one-
component  systems with only pair-interaction, to which we will restrict ourselves here, 
this relation is at present fairly well understood for the particular case of the isotropic 
interactions which prevail between spherical molecules without embedded  (electric or 
magnetic) dipoles or other anisotropic features [3]. In the simplest case one can usually 
neatly separate this pair-potential into a harsh repulsive part and a weaker attractive part. 
Using the overall amplitude of this pair-potential to fix the temperature scale and the 
range of the repulsions to fix the density scale,  the resulting phase diagram can be seen to 
be largely determined by the characteristic overall features of the attractions [4-6]. This is 
particularly so with respect to the fluid phases, on which we will focus our attention 
henceforth, while the solid phases are more sensitive to the finer details of the potential 
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[7]. In the case of isotropic interactions only two types of fluid phases are possible [8-
10,11], a low density fluid or vapour phase and a high density fluid or liquid phase.  The 
presence of attractions is a necessary condition for the appearance of a liquid phase in the 
phase diagram. As has been shown in [4-6], it is, however, not a sufficient condition. 
Indeed, this liquid phase can still be thermodynamically metastable, i.e., the liquid-vapour 
transition can still be pre-empted by the fluid-solid transition. This has been shown to be 
the case whenever the range of the attractions is too short relative to the range of the 
repulsions [4 -6]. Phase diagrams of systems interacting via density dependent potentials, 
with a constant excluded volume, can exhibit two phase transitions: gas-liquid and liquid-
liquid [12-14]. Before one can conclude that a liquid phase will appear in the system’s 
phase diagram it is thus essential to compute the complete phase diagram, including the 
solid phases, even if one is interested only in the presence of the liquid phase. In the case 
of anisotropic potentials a similar question can be raised relative to the presence of 
anisotropic liquids in the phase diagram. To simplify the problem we will consider here 
situations where only the attractions do exhibit anisotropic features whereas the repulsions 
remain isotropic. This corresponds to spherical molecules with an embedded anisotropy 
such as an electric or magnetic dipole. 

There are many types of interaction potentials which can be used to describe the 
interaction between particles of anisotropic fluids.  

In this paper we will study the nematic phase using the generalised van der Waals 
theory [15,16]. For this we consider the so-called Maier-Saupe model used to study the 
formation of liquid-crystalline phases induced by anisotropic repulsions [17]. 

As is well known, melting from the solid to the liquid is not a single transition, but 
occurs as a series of transitions into intermediate states called liquid crystal phases. These 
phases are the states of aggregation that are intermediate between the solid and the liquid.  
Liquid crystals exhibit a rich variety of phases [18]. One of the simplest (and better 
understood) is the nematic phase which is caracterized by positional disorder and long-
range orientational order. 

When the isotropic liquid is cooled the first phase that condenses is the nematic phase 
in which the orientation of molecules tend to orient in a certain direction so that their 
orientations are on average parallel to a particular direction specified by a unit vector n 
called the director. The positions of the molecule’s center of mass remain randomly 
distributed as they are in an isotropic fluid.  

If the orientation of each molecule makes an angle θ  with respect to the nematic 
director n, then a measure of the degree of order in the nematic phase is given by [19] 

21 3cos 1
2

θ − , where the angular brackets denote a statistical average. 

Systems which exhibit transition to a nematic phase have already been examined by 
many authors. Onsager [20] did show that particles of a sufficiently anisotropic shape, e.g. 
long rods or flats discs, form a nematic phase at high densities. Baus et al. [21] have used 
a density-functional theory for the study of the isotropic-nematic transition of hard 
ellipsoids. They found that the theory predicts a stable nematic phase, both for rodlike and 
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disklike molecules, as a result of competition between the orientational entropy and the 
anisotropic excluded volume effects. This phase has been confirmed by computer 
simulations for hard ellipsoids [22] spherocylinders [23-26] and for hard spheres [27]. 
Recently Mishra et al. [28,29] have used the mean spherical approximation and the 
percus-Yevick integral equation theories to calculate the free energy functional for the 
nematic phase. A first-order isotropic-nematic transition is to be found in the liquid 
regime, although these authors do not present results for the complete phase diagram. 
They expressed the two-particle density distribution ρ  in terms of order parameters and 
solved the resulting equation for values of order parameters ranging from zero to some 
maximum value. They constructed a free energy functional and used it to determine the 
value of order parameters in the nematic phase by minimizing it.  

By computer simulation of a system of ellipsoids Phoung and Shmid [30] showed that 
in the nematic phase there are two qualitatively different contributions: one that preserves 
rotational invariance and other that breaks it and vanishes in the isotropic phase. Recently, 
Lomba and al. [31] have used the Monte Carlo computer simulations to study the phase 
behavior of hard sphere Maier Saupe spins systems. According to this simulation this 
system undergoes a first-order isotropic-nematic transition continuously coupled to a gas-
liquid transition. 

In our early extensive study of the phase behavior of the Heisenberg model [15,16] we 
have generalized the van der Waals (vdW) theory for anisotropic interactions to study the 
phase behavior of a system of particles with magnetic exchange interactions.  
By using this vdW theory we have recently developed the calculation of free energy in a 
nematic fluid phase [32]. We have shown that there is no difficulty in stabilizing the 
nematic liquid phase over a large domain of the temperature-density plane. 

In the present investigation we perform a similar study. We will use the nematic 
Maier-Saupe interactions [17, 32] and the generalized vdW theory to calculate the free 
energy functional for the nematic phases (including the solid phases) and examine the 
thermodynamic stability of nematic liquids when the solid phases are taken into account. 
The value order parameter has been found by minimization of the reduced Helmholtz free 
energy functional in terms of order parameter. 
      This paper is organized as follows. In sec. 2 we introduce our model for the 
anisotropic potential. The free energy functional for the nematic fluid and solid phases 
will be computed in sec. 3 from a vdW approximation. The complete phase diagram will 
be presented in sec. 4 while sec. 5 contains our discussions and conclusions. 
 
2.  The molecular Interactions 
 
     We consider a system of N identical spherical molecules with an embedded anisotropy 
(such as an electric or magnetic moment). The position and orientation of these molecules 
will be specified, respectively, by the coordinates ( i ) of their center of mass and the 
orientations ( i ) of a unit spin variable ( ) placed at this center. The pair potential 
between two such molecules (say, i=1, 2) will be assumed to depend on their relative 

r
s 12 =is
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distance, 1 2r - r , and on their relative orientation, 21 . The interaction potential between 
two such molecules, , will be taken to be of the form : 

.ss

1 2; .s s

1 2 1 2V(r ,r ,s .s )

2 12. ) ( )HSs V r V
 

)1 2 1 1 12 12( , ; ( ) (MSV r r s r V r= + + ,                                                   (1) 
 
where the hard-sphere repulsion is given by )( 12rHSV
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where 12 12 /x r σ=   is the reduced distance and σ  which fixes the range of the repulsion, 
is the hard-sphere diameter. The second term  of Eq. (1) represents the isotropic 
(spin-independent) interactions: 
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The third term 12 1MSV r  of Eq. (1) represent the anisotropic (Mayer-Saupe nematic 
interaction ) interactions : 
 

                                                                                   (4) 2 12( ).MSV V r=
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2
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2 1 2( . ) ]P s s =  is the Legendre polynomial of order 2 and  is 
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The ( 1,2)l lφ =  in Eqs. (3) and  (5) can be taken to be of the inverse-power type  [32]:    
 

                                             (6) 12 12( ) 1/ ,2)l x xφ ( ) ,      ( 1ln l= =
 

The final pair potential of our Maier-Saupe model can thus written as (see [32] for more 
details): 
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where 1ε  fixes the energy scale and 2 1/γ ε ε=  measures the strength of the nematic 
interactions. The reduced potential 1/V ε  thus depends on three positive parameters  
{ }1 2n n, , .γ  
 
3.  The free energy           
 
As already stated above, computing phase diagrams is a very demanding task, certainly 
for anisotropic potentials such as Eq. (7). In view of this, here we will compute the free 
energy of the nematic fluids defined by Eq. (7) within a mean-field van der Waals type of 
approximation which extends the considerations of  [9,10] to anisotropic interactions. The 
resulting theory is very simple and flexible but nevertheless physically realistic when, as 
here, the major goal is to explore the influence of the potential parameters, such as  
{ }1 2, ,n nγ of Eq. (7), on the topology of the phase diagram.                               

As is well known, in the vdW-approximation the (hard-sphere) repulsions are 
described within a free-volume approximation while the attractions are treated within a 
mean field approximation [9,10,11]. 

The reduced Helmholtz free energy per particle, 0/f F Nε= , of a system with pair-
potential of the form defined by Eq. (7) reads (see [32] for more details): 

         
3

1 2ln( ) 1 ln ( ) ln ( )2f t t m tρ α ρ φ γφ⎡ ⎤= Λ − − − + −⎣ ⎦ N q ,                                        (8)
   

where 
1

Bk Tt
ε

=  is the reduced temperature, Λ  being the thermal de Broglie wavelength, 

N
V

ρ =  the average density and 

22q
t

mγ φ= ,                                                                         (9)    

2 0( )m P u=< > =
1

2 0
1

1 1 exp( ) 1( ) ( ) ( 1 )
2 2 ( )

qduP u h u
qN q q−

= − −∫ ,                                                  (10)          

1

21

1 2 exp( ) 3( ) exp( ( )) ( )  
2 3

q qN q du qP u D
q−

= =∫ 2
,                                       (11)     

with D denotes the Dawson function. 
 

( )α ρ  in Eq. (8) represents the fraction of the total volume which is freely accessible to 
the molecules. In particular, we have (see [7,9] 

 
0

( ) (1 )ρα ρ
ρ

= −                                                                                                            (12) 

for a fluid phase, with  3
0( ) 0.495

6
π ρ σ =  being the packing fraction above which the fluid 

becomes unstable, and  
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31/ 3

( ) 1
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ρα ρ
ρ

⎡ ⎤⎛ ⎞
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⎥                                                                                              (13)   

for a solid phase, with  the packing fraction above which a close-
packed crystal becomes unstable. 

3( / 6) 0.74cpπ ρ σ =

  
lφ (l=1,2)  in Eq. (8) denotes the following radial average of 12( )l xφ : 

12
1 2 1 2

1 ( ) ( ) ( ).
2l l

rdr dr r r
N

φ ρ φ ρ
σ

= ∫ ∫                                                                           (14)                 

with  12( )l
rφ
σ

= 12( )l xφ  defined by Eq. (3) and (5). 

     For a fluid phase, ( ) ,rρ ρ≡  Eq. (14) reduces to the cohesion energy 
 

                                                                                          (15)     3 2

1
2l dxx xφ πρσ φ

∞
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which, for inverse power potentials of Eq. (6), becomes 
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−
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     For a solid phase (perfect crystal) with lattice jr , we have  

1

( ) ( )
N

j
j

r rρ ϕ
=

= −∑ r

)

                                                         (17) 

where ( jr rϕ −  describes the normalized ( ( ) 1dr rϕ =∫ ) density profile around the site at 

jr . As in the hard–sphere crystals the particles are strongly localised, we can approximate 
the density profile ( jr r )ϕ −  of Eq. (17) by a delta function. In this case Eq. (17) becomes 

1

( ) ( )
N

j
j

r rρ δ
=

= −∑ r ,                                                          (18) 

By using Eq. (18), Eq. (14) reduces then, for the solid phase, to the lattice energy 
1 ( )
2l l

j
jxφ φ= ∑                                                          (19) 

where the sum runs over the lattice sites, /  = 1j jr xσ > , of a periodic lattice without 

defects, jr  being the distance of site j  to the site at the origin.  
For the inverse power potentials of  Eq. (6), we have thus  
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where
lnα is the Madelung constant [15]: 

 

1
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⎝ ⎠

∑                                                          (21) 

with 1jx x≥ and 1x  the reduced nearest neighbour distance ( 3
1/ )cp xρ ρ= . 

       In the following we will choose m as a new order parameter instead of q because q is 
unbounded ( 0 q≤ ≤ ∞ ) whereas m is bounded  (0 1).m≤ ≤  
According to the values of m we have then either isotropic phases (m =0) or nematic 
phases ( 0 . )m ≠

By plotting the curves, the reduced free-energy per unit volume ηf versus the reduced 
density 

3

6
πρση = , we see that this curve can be divided into two branches: N and N’ (see 

Fig.1.a,b). The N’ branch is the unphysical branch because ηf  is a concave function of η . 
The N branch, however, is the physical branch because ηf  is a convex function of η (see 
[32] for more details). 
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Fig.1. (a,b):  Graphical representation of the isotropic (I), unphysical nematic (N’) and physical 
nematic (N) branches of the reduced free energy per unit volume η f  versus the reduced   density 

η . The case shown in (b) corresponds to * 1

2

3 1.4
3

n
n

γ −
Γ = =

−
  and   t = 0.7 while in (b) corresponds to 

the solid phases with 1 2 6,  0.8 n n γ= = = and t =1.3. 
 
 
In our previous study [32], we have shown that the nematic phase can only occur for q 

larger than 1.51 or 2

t
φγ γ∗ =  larger than 2.24. In other words, the isotropic-nematic 

transition is always of the first-order type because the order parameter q has to jump from 
q=0   to   1.51.q ≥

In the following we will give the phase diagram for the fluid phases (both isotropic 
and nematic), solid phases, and finally we present the complete phase diagram where both 
fluid and solid phases are present. 
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4.  Phase Diagrams                       
 
For a system of N molecules enclosed in a volume V at the equilibrium temperature T, the 
phase behaviour can be deduced from the Helmholtz free energy per 
particle, 0( , ) /f f T F Nρ ε= = , of Eq. (8) where ρ  is the number density, ρ =N/V.  From 

( , )f f Tρ= we can obtain the pressure, p= p( ρ ,T), and the chemical potential, 
( , )Tμ μ ρ= , by using the following well known thermodynamic relations [2]: 

 
2   ;  ( ) ;fp fρ μ ρ

ρ ρ
∂ ∂

= =
∂ ∂

                                                                                      (22)                

and, knowing p and μ  we can find the coexisting densities 1 2( , )ρ ρ of phase 1 and phase 
2 by solving, for each T, the following two-phase equilibrium conditions [2]: 
 

             1 1 2 2( , ) ( , ) ,p T p Tρ ρ=                                                            (23)   
 
           1 1 2 2( , ) ( , )T Tμ ρ μ ρ= ,                                                            (24)      
                          

where  , iP iμ  denote the value of P, μ  evaluated for phase i = (1,2).  
When more than two phases are present for the same T, Equations (23) - (24) are solved 
for each pair of coexisting phases, and the thermodynamically stable phase transitions are 
separated from the thermodynamically metastable phase transitions by constructing the 
convex envelope to the free energy with the aid of Maxwell's double tangent construction 
[33].  
 
4.1.  The fluid phases 
 
In a first step we will consider only fluid phases and disregard the solid phases altogether. 
This is an often adopted attitude when, like here, the central question concerns the 
possible existence of a (nematic) liquid phase. As already stated above, such an attitude is 
hampered by the fact that several of the fluid-fluid transitions which can be found in this 
way may still be pre-empted by some of the fluid-solid transitions not explicitly 
considered here. In other words, many fluid phases, although mechanically stable, can still 
be thermodynamically metastable. 

In the present context we will consider the competition between two types of uniform 
fluid phases: the isotropic (I) fluid phase (phase 1) without orientation order (m=0), and 
the nematic (N) fluid phase (phase 2) for which the spin variables are, on average, aligned 
along some director ( 0m ≠ ).   
From  Eqs. (8) and (23) the pressure of the fluid phase can be written as 
 

2
1 2

1 ( )
p t mφ γφ

ρε α ρ
= − −                                                                                              (25)
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where ( )α ρ  is given by (12) and ( 1,2)l lφ =  by (16). The orientation order parameter, 
( , )t ,m m ρ=  is obtained by solving equations (9) and (10), yielding hence  ( , )p p tρ=  , 

as needed for Eq. (23), and similarly for ( , )tμ μ ρ=  by using Eq. (24).  
     According to the value of   Γ* = γ (n1-3)/(n2-3) there are two topologically distinct 
types of phase diagrams (see [32]). For weakly anisotropic fluids, , all the 
phase diagrams have a isotropic gas (IG)-isotropic liquid (IL) and a IL-nematic fluid (NF) 
transition. For temperatures below the triple point temperature   there is a single first-
order transition, namely a IG-NF transition. Above  there are two first-order transitions, 
namely a IG –IL transition ending at the critical point and a first-order IL-NF transition.  
For  there is only a first-order IF-NF transition. For stronger nematic anisotropies, 

 the critical point becomes metastable and the phase diagram contains only 
a IF-NF transition. 

0 1.086∗< Γ < 3

tt
tt

ct t>
1.0863,∗Γ >

 

4.2.  The solid phase 
 
In order to compute the total phase diagram (where both fluid and solid phases are 
considered), and to show hence the stability of the nematic liquid we first introduce the 
solid phases. 

It is seen from the latter section that for the IF-NF transition pre-empts 
the IG-IL transition. In a similar manner the fluid (F)-solid (S) transition can still pre-
empts this IF-NF transition. To answer the question whether a (stable) ferromagnetic fluid 
phase is present in the phase diagram, it is thus essential to include both fluid and solid 
phases. Before considering the complete phase diagram, we devote this section to the case 
where both phases in Eqs. (23) and (24) are solid phases.  

1.0863,∗Γ >

     The stable lattice structure (solid phase) is seen to be a compact lattice such as face-
centred-cubic or hexagonal close packed. 
In this paper we take this lattice structure to be of the face-centred-cubic (fcc) type, 
because, in addition to its higher symmetry (see tab.1), exact computer simulations and 
theoretical work on mono-disperse colloidal hard spheres indicate that the stable crystal 
structure is fcc [34,35]. 

Table 1 shows the number of nearest neighbours for fcc. Here n and N represent, 
respectively, the number of the shell and the number of particles in this shell. 

 
                             Table 1. 
 

 n N(fcc) 
1 12 
2 0 
3 6 
4 0 
5 24 
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For a fcc lattice, the maximum value of cpη is  

0.74.
3 2cp

πη = ≅                                                          (26) 

In fact, considering an unit cell for fcc lattice of volume 3V a= . At closing packing 
( 2a σ= ), the volume becomes 
 

3 32 2cpV V a σ= = = ,                                           (27) 
where σ  is the diameter of the particle. 

Moreover, the volume at closing packing can also be written as 
4 ,
cp

V
ρ

=                                                           (28) 

where 4 is the number of particles per unit cell and cpρ  the density at closing packing. 
By combining Eqs. (27) and (28) one obtains 
 

3 0.74.
6 3 2cp cp
π πη ρ σ= = ≅                                                         (29) 

 
In this section we will consider thus the competition between two types of uniform 

solid phases: the isotropic solid phase (m=0), and the nematic solid phase ( ).   0m ≠
From Eqs. (8) and (22), the pressure can be written as 
 

      
( )

( ) ( )1

1 2

/3 /3 21 2
1/3

1
/ /

6 61 /

n
n cp n cp

cp

n np t m2n
α ρ ρ α ρ ρ γ

ρε ρ ρ
= − −

−
                               (30)   

where 3 0.74
6 cp
π σ ρ =  for a fcc structure and ni

α is the Madelung constant of the fcc 

lattice for an inverse power potential of index  i =(1,2). in
As can be seen from Eq. (21), ni

α tends to 12, the number of nearest neighbours of the  

fcc lattice, for large  values.  in
Contrary to the fluid case, the phase diagram of the solid phase depends explicitly on 

the three parameters{ }1 2, ,n nγ

1(n =

. In the following we will consider the long-ranged 

isotropic interactions  and long-ranged nematic interactions .  
Depending on the value of these parameters, two topologically distinct phase diagrams are 
considered (see Fig.2). For 0

6) )

7

2( 6n =

0.64γ< <

0.

 all phase diagrams have an isotropic expanded 
solid (IES) (low density solid) - isotropic condensed solid (ICS) (solid of the same 
structure but of a higher density) and an isotropic solid (IS) - nematic solid (NS) 
transitions (see Fig.2.a). For 647γ > only the IS-NS transitions survive (see Fig.2.b).  
The critical point (open square in Fig.2.a) is determined by solving equations:  
 

2

20             ;                0p
η η

∂
=

∂ ∂
p∂

=                                                        (31) 
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One finds 
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Fig. 2. The two topologically distinct types of phase diagrams in the reduced temperature (t = 
kBT/ε1)-reduced density  ( 3

6
πρση = ) plane as obtained from the free energy (8) when only solid 

phases are considered. (a) The open square marks the solid-solid critical point. (The case shown 
corresponds to n1 = n2 = 6, and γ = 0.5). (b) The critical point has disappeared so that there are only 
two phases. (The case shown corresponds to 1 2 6,n n= = and 1)γ = . The triple point at which 
the three phases NS, ICS and IES coexist disappears for γ = 0.647). 
 
4.3.  The complete phase diagram 
 
In order to obtain a complete phase diagram we now consider the case where in Eqs. (23) 
and (24) phase 1 is a fluid phase and phase 2 a solid phase, and combine these fluid-solid 
transitions with the fluid-fluid and solid-solid transitions already considered in the two 
previous sections. Stated differently, the fluid-fluid transitions obtained from Eqs.(23) and 
(24) correspond to double tangent constructions on the free energy (8) when the latter is 
evaluated for the fluid phase, and similarly for the solid-solid transitions when Eq. (8) is 
evaluated for the solid phase, whereas the fluid-solid transitions correspond to double 
tangent constructions between the free energy of the fluid and that of the solid. When 
more than one double tangent construction is possible, the complete phase diagram is 
obtained from the convex envelope to the free energies. Since the solid-solid transitions 
do depend on the three parameters {γ, n1, n2} separately, so will the complete phase 
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diagrams. We know from [4,9,15,32] that when 0γ =  there are three topologically distinct 
types of phase diagrams according to the value of  ( is irrelevant when 1n 2n 0γ = ). 

For long-ranged interactions ( 13  the phase diagram exhibits the 7.n< < 6)
( , )c ct η critical point (see [32]), for intermediate-ranged interactions ( 17.6  there is 
no critical point, whereas for short-ranged interactions ( > 67) it exhibits the 

67)n< <
t1n ' '( , )c cη of 

Eq. (32). Here we consider the long ( 1( 6)n = -long 2( 6)n = case. Depending on the value 
of γ  three types of phase diagrams can occur. For small value of γ  the phase diagram 
contains four phases, namely IG, IL, IS, and NS and exhibits a triple points (where IG, IL, 
and NS are present) (see Fig.3.a). For larger values of γ  the isotropic IG-IL transition 
disappears, and only a IF-NS survives at low temperatures (see Fig.3.b). For even larger 
value of γ  a first-order IL-NF transition appears with the presence of two triple point 
temperatures (see Fig.3.c). 
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Fig. 3. Complete phase diagram, for both fluid and solid phases. The case shown corresponds to n1 = 
n2 = 6. (a) There are four phases: IG, IL, IS and NS with a critical point (filled square). (The case 
shown corresponds to γ =0.3).  (b) the IG-IL transition of (a) has become metastable. (The case 
shown corresponds to γ =0.6).  (c) The NF phase becomes now stable and we have two IF-NF-NS 
triple lines which confine the N-phase to a small pocket of the t η−  plane. (The case shown 
corresponds to γ = 3).   
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5. Conclusion 
 
The presence of attraction is a necessary condition for the appearance of a liquid phase in 
the phase diagram. As has been shown in [4,5], it is however not a sufficient condition. 
Indeed, in the case of a long ranged, weak attractive potential one recovers the van der 
waals model which shows a first-order liquid-vapour transition ending in a critical point. 
For a system with a shorter interaction range the liquid phase becomes metastable. 
In the present work, we have investigated the case of complex fluids composed of 
spherical molecules endowed with both translational (described in terms of the position of 
the centre of mass of the molecule) and orientational (described in terms of a classical 
spin variable) degrees of freedom. 

We have studied the phase diagram of a system of particles interacting via both 
nematic and isotropic interactions by using the extended vdW theory. We have considered 
the long- 1( -long 2 case. We have found that the topology of the phase 
diagrams depends sensitively on the relative strengths of the isotropic and nematic 
interactions. We have found that, (contrary to what happens when the solid phases are not 
taken into account [32]), the nematic fluid is stable only for large values of the strength of 
the nematic interactions. We have shown also that the nematic fluid is thermodynamically 
stable only in a small domain of the temperature-density plane contained between two 
triple lines. 

6n = ) )( 6n =
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