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Abstract 

 

This paper designs a procedure for investigating the hybrid projective synchronization 

(HPS) scheme between two identical 4-D hyperchaotic systems. Based on Lyapunov 

stability theory (LST), an adaptive control technique (ACT) has been designed to achieve 

the desired HPS scheme. The suggested technique determines globally the asymptotic 

stability and identification of parameters simultaneously using HPS scheme. It is noted that 

complete , hybrid and anti-synchronization turns into particular cases of HPS scheme. 

Numerical simulations are presented to validate the effectivity and feasibleness of the 

considered technique by using MATLAB. Remarkably, the theoretical and computational 

outcomes are in complete agreement. Also, the considered HPS scheme is very efficient as 

it has numerous applications in encryption and secure communication. 
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1.   Introduction 

Chaos theory is a field of applied mathematics which describes the behavior of extremely 

complex nonlinear dynamical systems possessing the property of high dependency on the 

initial conditions. This property is described as butterfly effect in the available literature 

which is observed by Lorenz [1] in 1963 while studying a simplified model of convection 

for weather predictions. Chaos theory has a wide range of applications in numerous areas 

of engineering and applied sciences, for example, jerk systems [2], robotics [3], finance 

models [4], weather models [5], ecological models [6], chemical reactions [7], circuits [8], 

oscillations [9], encryption [10], neural networks [11], biomedical engineering [12] etc. 

Consequently, chaos synchronization and control of nonlinear chaotic systems attracts 

researchers as well as academicians from various scientific fields in the recent years. 

Poincare [13], a French mathematician and physicist, firstly discovered chaos in the 

late 19th century while dealing with three body problem which contains sun, moon and 
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earth in order to study stability of the solar system. But the first introduction to chaos was 

given by Lorenz [1]. Because of the undesirable immensely complex characteristics of 

chaotic systems, the chaos control and synchronization of chaotic systems becomes the 

most prominent concern for the researchers over the past few years. 

Pecora and Carroll [14] put forward the idea of chaos synchronization for the first time 

in 1990 using master-slave configuration with distinct initial conditions. Afterwards, 

several researchers continued the pioneered work established by them. Chaos 

synchronization is a process in which state trajectories of two or more chaotic systems 

with different initial conditions converge and synchronization error tends to zero 

asymptotically as time approaches infinity. 

Till date, an enormous variety of synchronization techniques have been developed in 

synchronization theory, for instance, complete synchronization[15], anti-synchronization 

[16], hybrid synchronization [17], hybrid projective synchronization [18], function 

projective synchronization [19], lag synchronization [20], phase synchronization [21], 

projective synchronization [22], function projective synchronization [19], modified 

projective  synchronization [23] etc. 

Up to now, a variety of control methods to achieve chaos control have been introduced 

in control theory such as active control [24], adaptive control [25], backstepping design 

[26], feedback control [27], sliding mode control [28], impulsive  control [29] etc. 

A hyperchaotic system is known as a chaotic system possessing at least two positive 

Lyapunov exponents. Rossler [30] introduced the first classical hyperchaotic system in 

1979. During the past decades, many classical hyperchaotic systems have been 

discovered, for example, Lorenz system, Cai system, Chen system, Liu system,  Nikolov 

system and so on. 

Hubler [31], in 1989, firstly introduced ACT to synchronize chaotic systems. Mainieri 

and Rehacek [32] proposed the idea of projective synchronization to achieve chaos 

synchronization among chaotic systems in 1999. In [33], the synchronization theory of 

chaotic systems such as Chua’s circuit and Rossler-like system have been developed 

separately using ACT and also it has been shown via simulation results that it has 

applications in secure communications. Also, Yassen studied synchronization of a modified 

Chua’s circuit system using ACT [34]. Further, projective synchronization between 

chaotic systems is discussed [35]. Also, Li et al. studied adaptive backstepping scheme for 

synchronizing nonlinear chaotic systems [36]. Moreover, Wu and his team discussed 

complex projective chaos synchronization among complex chaotic systems [37]. Various 

control techniques have been analyzed in detail for newly constructed hyperchaotic 

systems [38-40]. 

Influenced from the above stated discussions, this paper aims to study a hybrid 

projective synchronization (HPS) between two identical 4-D hyperchaotic systems by 

using ACT. ACT is very useful in estimating the parameters among master and slave 

systems. Therefore, by using this approach, not much information is necessary for 

synchronizing the master and slave systems. Moreover, we investigate in detail an 

adaptive control laws along with an estimated parameter update laws using LST.  
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The current paper is categorized as follows: In Section 2, basic preliminaries having 

some notations and essential terminology used within this paper has been elaborated. 

Section 3, contains the basic structured properties of the system. Section 4 examines the 

ACT along with controller laws and estimated parameter updating laws to stabilize 

globally and asymptotically the given hyperchaotic systems. In Section 5, numerical 

simulation results are illustrated to show the accuracy and feasibleness of the proposed 

HPS approach. Finally, Section 6 consists of concluding remarks and discussions. 

 

3. Preliminaries  

 

In the present section, we formally introduce few notations and terminology and mention 

some basic results to be used in the subsequent sections of the paper. Consider the master 

system and the corresponding slave system as:  
ẋ = f(x )                                                                                                                                            (1)           

ẏ = g(y ) + u                                                                                                                                   (2)              

where x = (x  , x  , . . . , x  )
 , y = (y  , y  , . . . , y  )

  are the state vectors of (1) and 

(2) respectively, f, 𝑔: 𝑅 → 𝑅  are two nonlinear continuous vector functions and u =
(u  , u  , . . . , u  ) ∈ R

  is the suitable controller to be constructed. 

 

Definition 1: The systems (1) and (2) are said to be in hybrid projective synchronization 

(HPS) if 

lim → ∥ e ∥= lim → ∥ y − lx ∥= 0                                                                        (3)   (3)                                                 

for some l = diag(l , l , . . . , l ) and ∥. ∥ denotes vector norm. 

Remark 2.1: For l = l =. . . . = l =1, complete synchronization is obtained. 

Remark 2.2: For l = l =. . . . = l =-1, anti-synchronization is achieved. 

Remark 2.3: If l  ′s are not all zeros and l ≠ l  for some 𝑖 and 𝑗, then modified projective 

synchronization is obtained. 

 

3.    System Description 

Proposed by Zhang et al. [41], the investigated hyperchaotic system is given as: 
ẋ  =  −a x  + b y  z   

ẏ  =  −c y  
 + d x  z  + x  w   

ż  =  d z  − x  y   

ẇ  =  k w  + z  ,                                                                                                                          (4)            

where (x  , y  , z  , w  )
 ∈ R  is the state vector and 𝑎 ,𝑏 ,𝑐 ,𝑑  and 𝑘  are positive 

parameters. When 𝑎 = 2.6, 𝑏 = 10, c = 7, 𝑑 = 3 and 𝑘 = 0.05 the system (4) 

displays hyperchaotic behavior. Further, Fig. 1(a-f) exhibits the phase portraits of (4). 

 

4.    Illustrative Example 

 

Here, we examine HPS scheme to describe the laws in order to estimate parameters along 

with adaptive controllers in such a way that each of the state variables x  , y  , z   and 

w   tend to equilibrium points for t approaching infinity. 

Conveniently, the system (4) is taken as the master system and the corresponding slave 

system may be given as:  
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ẋ  =   −a x  + b y  z  + u   

ẏ  =   −c y  
 + d x  z  + x  w  + u   

ż  =  d z  − x  y  + u   

ẇ  =  k w  + z  + u  ,                                                                                                              (5)             
where u  ,u  ,u   and u   are adaptive control inputs to be determined so that the HPS 

scheme among two identical hyperchaotic systems will be attained. 

We describe the state errors as  
e  =   x  − l x   

e  =   y  − l y   

e  =   z  − l z   

e  =   w  − l w                                                                                                                                (6)                                               
The prime focus of this paper is to propose controllers u  , 
(i = 1,2,3,4) so that the state errors described in (6) must satisfy   
lim → e  (t) = 0    for    (i = 1,2,3,4). 
The consequent error dynamics simplifies to   
ė  =   −a e  + b (y  z  − l y  z  ) + u    

ė  =   −c (y  
 − l y  

 ) + d (x  z  − l x  z  ) + x  w  − l x  w  ) + u    

ė  =   d e  − x  y  + l x  y  + u   

 ė  =   k e  + z  − l z  + u                                                                                                       (7)                    
Next, we define the adaptive control inputs as:  

u  =   â e  − b̂ (y  z  − l y  z  ) − K e    

u  = ĉ (y  
 − l y  

 ) − d̂ (x  z  − l x  z  ) − x  w  + l x  w  − K e    

u  =   −d̂ e  + x  y  − l x  y  − K e    

 u  =  −k̂ e  − z  + l z  − K e                                                                                                   (8)             (8  

where K ,, K , K  and K  are positive gain constants. 

By putting the values of control inputs (8) in error dynamics (7), we obtain   
ė  =   −(a − â )e  + (b − b̂ )(y  z  − l y  z  ) − K e    

ė  =   −(c − ĉ )(y  
 − l y  

 ) + (d − d̂ )(x  z  − l x  z  ) − K e    

 ė  =  (d − d̂ )e  − K e                                                                    

ė  =   (k − k̂ )e  − K e                                                                                                                 (9)            (9)   

where â , b̂ , ĉ , d̂ , ĥ , k̂  are estimated values of unknown parameter a , b , c , d , h , 

k  respectively. 

Now, the parameter estimation error is defined as:  

ã = a − â , b̃ = b − b̂ , c̃ = c − ĉ , d̃ = d − d̂ , k̃ = k − k̂                                      (10) 
Applying (10), the error dynamics (9) becomes:  

ė  =   −ã e  + b̃ (y  z  − ł y  z  ) − K e   

ė  =   −c̃ (y  
 − l y  

 ) + d̃ (x  z  − l x  z  ) − K e   

ė  =   d̃ e  − K e   

ė  =   k̃ e  − K e                                                                                                                                  (11)                                           
The derivative of parameter estimation error (10) is given by   

ȧ̃ = −ȧ̂ , ḃ̃ = −ḃ̂ , ċ̃ = −ċ̂ , ḋ̃ = −ḋ̂ , k̇̃ = −k̇̂                                                                      (12)       (12) 
Defining the Lyapunov function as   

V =   
 

 
[e  
 + e  

 + e  
 + e  

 + ã 
 + b̃ 

 
+ c̃ 

 + d̃ 
 
++k̃ 

 
]                                             (13)    (13) 

which shows that 𝑉 is positive definite. 

Derivative of 𝑉 is obtained as:   
V̇ =   e  ė  + e  ė  + e  ė  + e  ė  − ã ȧ̂  
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 −b̃ ḃ̂ − c̃ ċ̂ − d̃ ḋ̂ − k̃ k̇̂                                                                          (14) (14) 
Considering (14), we define the parameter estimation laws as :  

             ȧ̂ =  −e   + K (a − â ) 

 ḃ̂ =  (y  z  − l y  z  )e  + K (b − b̂ ) 

 ċ̂ =  −(y  
 − l y  

 )e  + K (c − ĉ ) 

 ḋ̂ =   (x  z  − l x  z  )e  + e  
 +   K (d − d̂ ) 

 k̇̂ =  e  
 + K (k − k̂ ),                                                                                (15)       

where K , K , K , K  and K  are positive gain constants. 

 
Theorem 1: The hyperchaotic systems (4)-(5) are hybrid projective synchronized globally 

and asymptotically for every initial states (x  (0), y  (0), z  (0), w  (0)) ∈ R
  by the 

adaptive control inputs (8) and the parameter update law (15).  

Proof. The Lyapunov function V as described in (13) is a positive definite function. On 

simplifying equations (14) and (15), we have 

V̇ =   −K e  
 − K e  

 − K e  
 − K e  

 − K ã 
 − K b̃ 

 
− K c̃ 

 − K d̃ 
 
− K k̃ 

 
 

 < 0 

which implies that V̇ is negative definite . 

Hence, by LST, we deduce that the HPS error e(t) → 0 exponentially as t → ∞ for every 

initial conditions e(0) ∈ R . This finishes the proof.  

 

Fig. 1. Phase portraits of 4-D hyperchaotic system in (a) x  − y   plane, (b)x  − z   plane, (c) 

y  − z   plane ,(d) y  −w   plane, (e) y  − z  −w   space , (f) x  − y  − z   space. 

a b 

c d 

e f 
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5.    Numerical Simulations 

 

This section provides some simulation results to demonstrate the efficiency and 

feasibleness of the investigated HPS technique using ACT. Here, we simply use the 

fourth-order Runge-Kutta method to solve system of differential equations. For the given 

system, the parameters are taken as a = 2.6, b = 10, c = 7, d = 3 and k = 0.05 to 

make sure that the system depicts chaotic behavior in the absence of control inputs. The 

initial states of the master and slave systems are (x  (0) = 0.4, y  (0) = −0.5, z  (0) =

−0.1, w  (0) = 0.7) and (x  (0) = 3, y  (0) = 5, z  (0) = 3,w  (0) = 4) respectively. 

The control gains are chosen as K = 10 for i = 1,2, . . . ,9. 

We achieve HPS scheme between master and slave systems by selecting the scaling 

matrix 𝑙 with l = 2, l = −2, l = 3, l = −3. The numerical simulations are shown in 

Fig. 4(a-d) which depicts the trajectories of master and slave systems. The 

synchronization errors (e  , e  , e  , e  ) = (2.2, 4, 3.3, 6.1) tend to zero for t tending to 

infinity in Fig. 4(e). Also, Fig. 4(f) exhibits that estimated values (â , b̂ , ĉ , d̂ , k̂ ) of 

uncertain parameters converging to their original values asymptotically and globally with 

time. Therefore, the considered HPS scheme between master and slave systems is justified 

computationally.  

 

Fig. 2. Phase portraits of the trajectories of master and slave systems under HPS scheme (a) between 

x  (t) − x  (t), (b) between y  (t) − y  (t), (c) between z  (t) − z  (t), (d) between w  (t) −

w  (t), (e) synchronization error, (f) Parameter estimation.  

 

6. Concluding Remarks and Discussion 

In this research work, we have explored the proposed HPS scheme among identical 

hyperchaotic systems using ACT. By designing proper control inputs according to LST, 

the proposed HPS scheme is achieved. It is observed that the anti-synchronization, 

a 
b c 

d e f 
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complete synchronization, and hybrid synchronization are specific cases of HPS scheme. 

The effectivity and feasibleness of the analytical results are justified by performing 

simulations using MATLAB. Significantly, the theoretical work and the numerical results 

both are in excellent agreement. Also, the investigated HPS scheme is very effective as it 

has several applications in encryption and secure communication. In this work, the time 

taken by the synchronization error converges to zero is less in comparison with earlier 

related published work. We noticed that our proposed methodology is basic yet 

theoretically rigorous. Moreover, we understand that the considered HPS scheme can be 

generalized by using other control schemes. 
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