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Abstract 

 

Dyon is a hypothetical particle in high energy physics that carries simultaneously both 

electric and magnetic charge. A dyon with zero electric charge is referred to a magnetic 

monopole.  The paper, reports a simple reformulation of Maxwell equations for dyon in 

arbitrary media. The Lorentz, Coulomb gauge conditions and the wave equations of dyon in 

arbitrary media are derived in a simple and compact manner. 
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1.   Introduction 

The question of existence of monopole [1] and dyons [2-11] has become a challenging 

new frontier and the object of more interest in the recent years of high energy physics. 

Dirac revealed that a single magnetic pole anywhere in the universe would explain the 

quantization of electric charge. Schwinger-Zwanziger [12,13] provided the generalization 

of this quantization condition for dyons. Keeping in view the result of witten that 

monopole are necessarily dyons. Magnetic monopoles have not been seen in the real 

world. Defining certain physical quantities including magnetic monopole is difficult. 

Therefore, the symmetry between electric and magnetic charge is very useful in 

describing these quantities. The experimental appearance of composite entities whose 

behavior is similar to that of the magnetic monopoles is the main cause for establishing 

new electrodynamics within the solid, in which there are magnetic fields whose 

divergence is different from zero. The possible generalized approach that derives to these 

equations was analyzed with the help of dyon as a particle with electric and magnetic 

charge. According to this approach, the charge description can be set in a complex plane. 

The electric charge is placed on the real axis, and the magnetic charge is represented on 

the imaginary axis. Keeping in view the recent potential importance of monopoles and 

dyons along with the fact that despite the potential importance of monopoles, the 

formalism necessary to describe them has been clumsy and not manifestly covariant, Negi 
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and coworkers has already developed a self-consistent quantum field theory of 

generalized electromagnetic fields associated with dyons (particles carrying electric and 

magnetic charges) [14-16]. Most of the researches previously reported Maxwell equation 

of dyon [14,15], in different media (homogenous, chiral medium, isotropic) medium). The 

four Maxwell equations, whose formulation in the emptyspace [17] (the vacuum) are 

already well known, have been reconstructed for the existence of matter with electric and 

magnetic charges. Jefimenko [18] has derived the solution of the Maxwell equation in 

arbitrary media (dielectric and magnetic media) in the absence of monopole. This paper 

considers Maxwell equations of dyon within matter. The Maxwell equations for dyon in 

arbitrary media (dielectric and magnetic media) are derived [19]. In this paper, we have 

made an attempt to show the wave equations for dyon in the case of separate electric and 

magnetic charge in arbitrary media. 

 

2. Field Associated with Dyon 

 

Considering the existence of of magnetic monople Dirac [20] generalised Maxwell field 

equation for dyon in following manner in vaccum [21-23] in SI units for c=ħ=1 as, 
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The electric and magnetic field associated with dyons carrying generalized charge can be 

written as [22] 

igeq                                                              (5) 

Where e and g, are electric and magnetic charges respectively. The generalized four 

potentials associated with dyons are defined as, 

 iDCV                                                                     (6) 

 

Where 
C  and 

D  are electric and magnetic four potentials respectively.  Electric and 

magnetic fields of dyons in terms of components of electric and magnetic potentials are 

defined as,  
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The vector wave function   associated with generalized electromagnetic fields is defined 

as, 

 

BiE
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We get following the form of generalized Maxwell's equations for dyons 
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Where ),( jJ  ,   and j are the generalized charge and current source densities of 

dyons given by 
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The generalized covariant form of Maxwell Dirac equations of dyon as, 
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The generalized field equation of dyon is given as 

 jG ,                            (14) 

Where  JJ  ,
  

 

3. Maxwell Field Equation of Dyon in Arbitrary Media 

Considering the existence of magnetic charge and current density, in addition to the 

electric charge and current density, the Maxwell equations of dyon in arbitrary media 

would be [19]
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By using 
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, Maxwell's field equation of dyon in terms of ej , mj ,JM, 

M and P  in arbitrary media are derived. The electric field, magnetic field, displacement 

field and magnetic intensity vector of dyon are defined in terms of components of 

potentials as [19]. 
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Where e , m , D  and H  are scalar potential and  C, D, G and I are vector potential 

for electric and magnetic charge in case of electric field, magnetic field, displacement 

field and magnetic intensity vector respectively. 

 

4. Potential Formulation of Dyon 
 

Putting the value of E, B, D and H into the equations (15-18), after solving these equations 

we get scalar and vector wave equations for electric and magnetic charge in arbitrary 

media respectively as, 
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(26) 

Coulomb Gauge 

The coulomb gauge condition for vector potential in case of electric field and magnetic 

intensity respectively as, 
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Then the inhomogenous wave equations (23-26) can be written as, 
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Equations (29-32) are the time-dependent Poisson's equations which lead to the following 

solutions as, 

04

1


e 








'

3

'

)','(

v

retPe

xx

xt
xd  

(33) 










 

'

03

0 '

)','(

4

1

v

retMm
H

xx

xt
xd  

(34) 

Where α has vanishing gradient. 

By putting the value of electric and magnetic scalar potentials for electric field and 

magnetic intensity vector, inhomogenous wave equations (33) and (34), are obtained as, 
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Lorentz Gauge 

The Lorentz gauge condition for vector potential in case of electric field and magnetic 

intensity respectively as, 
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Then the inhomogenous wave equations (23-26) can be written as, 
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Under the assumption of causality, the solutions of equation (39-42) are retarted potentials 

as, 
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5. Conclusion 

 

In this paper, we have discussed the field associated with dyon , Maxwell field equations 

of dyon and the  wave equations of dyon in arbitrary media. The wave equations for 

electric and magnetic charge in case of electric field and magnetic intensity are derived in 

arbitrary media. The generalized electromagnetic wave equation of dyon associated with 

Lorentz and Coulomb gauge are also derived and their solutions of inhomogenous wave 

equations are deduced. These equations reduce to the theory of electric (magnetic charge) 

in the absence of magnetic charge on dyon or vice-versa. 
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