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Abstract
In this paper, we have proved an LP inequality for polar derivative of the polynomial having
all its zeros in the disk |z| <k, k <1. Our result generalizes and improves the earlier
known results.
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1. Introduction

Let p(z)= jz:)ajzj be a polynomial of degree nand p'(z) be its derivative, then for r > 0,

1 1
27 . r T 27 . r T
{£ pe”))| da} < n{£ |p(e”)| de} (1.1)
Inequality (1.1) is sharp and equality holds for polynomial p(z)=az" , a=0.
Inequality (1.1) for r>1 is due to Zygmund [1], who proved it for all trigonometric

polynomials of degree n and not only for those which are of the form p(eig). Arestov [2]

proved that (1.1) remains true for O<r<1 as well. Lal [3] also has generalized
inequality (1.1).

If we let r — oo in (1.1) and make use of well-known fact from analysis [4] that

1
. 1 2 o\ Ir 2
l'll‘{g I p(e”)] de} =max|p(z)], 12
we get the following inequality
r‘r}glx| p'(z)|<n n‘)‘ai11x| p(z)| (1.3)

Inequality (1.3) is a classical result due to Bernstein [5].
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If we restrict ourselves to the class of polynomials having no zeros in |z|<1, then
inequality (1.1) can be sharpened . In fact, in this case the following results are also
known.
Theorem A. If p(z)is a polynomial of degree n having no zero in |z| <1, then for each
r>0,

where
1
2z Cor T
Cr:{if|l+e'“ da} :
272' 0

In above inequality, equality occurs for p(z)=c 2" + 8, || =|f|.
For r =1, Theorem A was proved by de-Bruijn [6] and later independently proved by
Rahman [7].

Aziz and Rather [8] proved the following result for the polar derivative of a
polynomial p(z).
Theorem B. If p(z)is a polynomial of degree n having all its zeros in |z| <k, k<1, then
for every real or complex number a with|a| >k,

D, p(z)|2n(|015|_k]max|p(z)|. (1.5)

L
r
’

(1.4)

max

I2=2

+k )l

Inequality (1.5) is best possible and equality occurs for p(z): (z - k)“ with real >k .
Recently integral inequalities have been extended to polar derivatives. In this

direction, the following result was obtained by Govil et. al. [9].

Theorem C. If p(z) is a polynomial of degree n having no zero in |z| <1, thenfor r>1

and for every real or complex number o with |a|>1,

e
r
1

(Zﬂ D, p(e‘9)|'d¢9)? < n(|a| +1)Fr(1”| p(e‘9)|rd¢9) (1.6)
where
F_ 2 ’

| Th+e| do

0
In the limiting case, when r — oo, the above inequality is sharp and equality holds for the
polynomial p(z)=A+uz", |A|=|4|.
Dewan et. al. [10] obtained a generalization of Theorem B in the sense that maximum of
|p(z)] on|z| =Lon the right hand side of (1.5) is replaced by a factor involving the integral
mean of p(z) on |z =1. In fact, they proved
Theorem D. If p(z)is a polynomial of degree n having all its zeros in |z| <k,k <1, then
for every real or complex number « with |a| >k, and foreach r >0
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n(|of —k)@’] p(e"’)|'d9)’ s(zﬂu ke”’|'dej' max|D, p(z)| (L.7)
The result is best possible for sufficiently large r and equality holds for p(z)= (z—k)n
withreal o>k

Aziz and Shah [11], for the class of polynomials p(z)zanz"+_§njansz"”‘, 1<u<n,

i=u

having all zeros in [z] <k, k <1 proved the following

Theorem E. If p(z)= a,z"+ Eanﬂ.z”’j , 1< 4 <n,isapolynomial of degree n having all
its zeros in [z| <k, k <1, theh'for each r >0,

n{ZﬂIJ(e“”)rdQ}r < {ijj|1+ k*’ei6|rd6}r rﬂ‘alx| p'(z)]. (1.8)

Now, if we involve the coefficients of a polynomial, then we obtain a result which gives
an improvement as well as a generalization of Theorem D and in a particular case
Theorem E. More precisely, we prove

Theorem 1. If p(z)zanz” + _zn‘,ansz""' , 1< u<n,is apolynomial of degree n having all

i=u

its zeros in [z] <k, k<1, then for every real or complex number & with |a > A

11
and foreach r >0, p>1, g>1with F+E:1’ we have

1

 (Jo- A (Zg)n\p(e‘e)‘ rdejr
1 1
s@ ‘1+ A€ ‘rp dejrp (zén‘DaP(eie)‘rqdej A (L.9)

nfa, [k +pla, [k
U

where

nfa, k" +pla, |

The following result is an immediate consequence by letting q —o (so that p—1) in
Theorem 1.

Corollary 2. If p(z):anzn + ian_jz""' , 1<u<n,is a polynomial of degree n having
i=u

all its zeros in |z]<k, k<1, then for every real or complex number a with |a|> A, ,
and for each r>0

(-, ) ] o)

where A, is as defined in Theorem 1.

1
.

'olé»)F s(zﬂu Avye‘”rdej max

I|

D, ple"”)| (1.10)
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Remark 3. To prove Theorem 1 as an improvement as well as a generalization of
Theorem D, it is sufficient to show that

A<k,
that is
nla|k®+

+

an

an—l

<k,
n

a

n

a

n-1

which is equivalent to

n|a,|k*+|a,.| <n|a|k+|a,lk,
that is

nlalk(k-1)<|a,|(k-1),
implies

na,lk=|a,,l, (since k<1)

which is true due to Lemma 2.2 for x=1. Hence, we show that Theorem 1 is an
improvement as well as an generalization of Theorem D.
Dividing both sides of (1.10) by |a| and letting o] — o, we get the following result.

Corollary 4. If p(z)=a,z"+ Ya, 2", 1< u<n,is apolynomial of degree n having all
j=u

its zeros in |z| <k, k<1, then foreach r>0

n(zﬂ p(e“’)|rdeji < (1”|1+ A, ei9|rd6’)i r‘n‘ax| p'(z)], (1.11)

=1

where A,  is as defined in Theorem 1.

Remark 5. The above inequality gives better bound than the bound obtained from
inequality (1.8) of Theorem E. To prove this, it is sufficient to show that A , <k“. As
we have proved earlier that A , <k, on similar lines, A, <k“ can be proved easily by
using Lemma 2.2.

2. Lemmas

For the proofs of the above stated theorems, we need the following lemmas.

Lemma 2.1. If p(z)=a,z" +Ya, 2", 1< u<n,is apolynomial of degree n having all
j=u

its zeros in |z] <k, k<1, and let q(z)=z2" p[%) , then

k“|p'(z)| = |o'(z)| for |z| =1, (2.1)
The above lemma is due to Aziz and Shah [11, Lemma 2].

Lemma 2.2. If p(z): az'+ ian_jz“’j , 1< u<n,is apolynomial of degree n having all
j=u

j , then

N | =

its zerosin |7|<k, k<1 and q(z)=2" p[
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la'(z)| < A |p'(2)|for |7 =1, 2.2)
where A_, is as defined in Theorem 1,
and

nia, 1

ala,,|” ) e

The above lemma is proved by others [7,12].

3. Proof of the theorem

Proof of Theorem 1. Since p(z) has all its zeros in |z| <k, k<1, therefore by
Lemma 2.2, we have for |z =1

0'(2)] < A lp'(@)]. 3.1)
Since q(z)=2" p(%j , then we have p(z)= z"q(%} . This gives

z2p'(z)=nz’ qej—z”lq'(%] : 3.2)
z z
If z=€“, 0<6<2r, then from (3.2), we get
|p-(ei0)|:|eiu p-(ei0)|
- ‘nein()aei_a)_ei(nfl)a ﬂei_aj

- | ne—inH q(eis) _e—i(n—l)H q-(eie)|

= [naE") —e" d'(e")|.

Equivalently,

|p'(2)|=|na(z) —zq'(2) |for |z] =1. (3.3)
Using (3.3) in inequality (3.1), we get for |z| =1

a(@)< ALIna@-20@)| (34)

Now for every real or complex number o with |&| > A, ,, we have for || =1
D,p(z)|=|n p(z)+(a~2)p'(2)]
2ldf|p'@)|~|np@)-2p'(2)],
which gives by interchanging the roles of p(z) and q(z) in (3.3) for |z| =1that
D, p@)|2[e]|p'(@)]-|a'(@)]
> |e||p'(2) |- ALl P'(2)| (using (3.4)
= (j-A, )P @] . (3.5)

Again, since p(z) has all its zeros in |Z|Sk, k <1, therefore by Gauss-Lucas theorem

p'(z) has all its zeros in |z] <k, k <1and thus the polynomial
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o[ L) nafe)-2ate)

1 . .
has all its zeros in | z| n >1. Therefore, it follows from (3.4) that the function

1
o
o) o) 29)

is analytic for |z|<1 and |w(z)|<1 for |z|<1. Furthermore,w(0)=0 and so the
function 1+ A, w(z) is subordinate to the function 1+A  z for|z|<1. Hence, by a
well-known property of subordination [13], we have for r >0 and for0< 8 < 2r,

27 C\r 2 o
J|1+ A, we”)[ do<|1+A e[ 'do. (3.6)

Now,
g
T A= 24

Which, with the help of (3.3), for |z| =1 gives

n[q(@)|
il =
L+A, w(2)|= ol
_ @]
Ip'(z)|

Using (3.5) in the above inequality, we get for |z| =
(e -A, )| p(@)]

[1+A , w(2)|2 . (3.7)

This implies for 0< 8 < 2r,
nal-A,)|pEe")|<[1+A , w(e”
This gives for each r>0
(oA, )pe) | <A, w2,

Integrating both sides of the above inequality with respect to &, from 0 to 2, we get
- 2z . r
(- A, ) 7] ple)] a0
27 R r i r
< £|1+ A, w(e'”)| (|Da p(e”)| }19.
The above inequality on applying Holder’s inequality for p>1, g>1 and r >0, yields
1

-, lolefoo |

1

( Jlre A wie) d@] ( D, ple”) rdHJE, 3.8)

i9)|.
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Using inequality (3.6) with r replaced by pr in (3.8), we obtain foreach p>1, q>1 and

r >0 with l+l =1,
e, {196 a0

i 1
g(2ﬂ1+ A‘“ ei9|prd0)pr(ZI|Da p(eig)|qrd9)qr ,
0 0
which is the inequality (1.9) and this completes the proof of Theorem 1.

4. Conclusion

Bounds given by our theorem are better than the bounds obtained from inequality (1.8)
and inequality (1.7) for polynomials having all zeros in |z] <k, k <1.
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