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Abstract 

This paper presents results of comparative study of large eddy simulation (LES) that is 

applied to a plane turbulent channel flow. The LES is performed by using a finite difference 

method of second order accuracy in space and a low-storage explicit Runge-Kutta method 

with third order accuracy in time. In the LES for subgrid-scale (SGS) modelling, Standard 

Smagorinsky Model (SSM) and Dynamic Smagorinsky Model (DSM) are used. Essential 

turbulence statistics from the two LES approaches are calculated and compared with those 

from direct numerical simulation (DNS) data. Comparing the results throughout the 

calculation domain, it has been found out that SSM performs better than DSM in the 

turbulent channel flow simulation. Flow structures in the computed flow field by the SSM 

and DSM are also discussed and compared through the contour plots and iso-surfaces. 

Keywords: Large eddy simulation; Turbulent channel flow; Standard Smagorinsky model; 

Dynamic Smagorinsky model. 
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1.   Introduction 

Large eddy simulation (LES) has become a sophisticated predictive method for 

understanding the physics of turbulence over the few decades. The position of LES 

approximation is conceptually intermediate between DNS [1-3] and Reynolds-averaged 

Navier-Stokes (RANS) [4] techniques. Although DNS is considered as the exact approach 

to turbulence simulation, but it uses fine grids to resolve all the scales of motion, thus 

requiring a huge amount of computational resources. On the other hand, in the RANS 

approximation the small scales tend to depend only on viscosity, while the large ones are 

affected very strongly by the boundary conditions. Unlike the full-scale turbulence 

modeling of RANS technique, in LES method, large-scale motions are exactly calculated 

and the effects of subgrid-scale (SGS) motions are modeled. LES is less expensive and 
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can simulate very complex flow fields in turbulence at a reasonable computational cost. 

So the use of LES [5-15] is increasing day by day as a reliable prediction tool.  

 Recent important issues for LES are SGS modeling and numerical method. There are 

different kinds of SGS models, such as Standard Smagorinsky model [16], Mixed Scale 

model [13], Dynamic models [13], etc. which are based on different relations. Different 

authors use different SGS models based on their simulation technique to obtain better 

results. With the SGS model in LES the discretization methods are also important for 

better accuracy of the solution. A literature review suggests that the numerical methods 

which are widely used for spatial discretization in LES are either spectral method or the 

conventional finite difference method with structured grids [17,18]. Among the two 

methods the finite difference method is the most straightforward one. For temporal 

discretization of Navier-Stokes equations explicit Runge-Kutta methods [19] are a popular 

choice due to their better stability properties and for adjustment with time stepping. But 

this method is not straightforward because of the differential-algebraic nature of 

equations. In wall-bounded turbulent flows for LES calculation the low storage explicit 

Runge-Kutta methods [20,21] have more demand among many for sufficient utilization of 

computer resources. 

 In this study, the aim is to perform LES where the SGS models used are SSM and 

DSM. The LES is performed in a plane turbulent channel flow. The governing equation of 

LES is discretized by a finite difference formulation which has a second order spatial 

accuracy, and for temporal discretization a low-storage explicit Runge-Kutta method with 

third order accuracy is applied. The performance of SSM and DSM in LES are justified 

through turbulence statistics and different contour plots. The statistical results are 

compared with the DNS data of Moser et al. [1] and Kim et al. [2]. For both of the SGS 

models, instantaneous vortical structures in the computed flow fields have also been 

discussed.  

 

2. Governing Equations for LES and the SGS Models 

 

By applying the grid filter to the dimensionless Navier-Stokes and continuity equations, 

the governing equations of LES for an incompressible plane turbulent channel flow in 

Cartesian co-ordinates are obtained as follows:  
 

  
uu u1 p ji iu u νi j ijt x ρ x x x xj i j j i


     
       
         

,    (1)     

  

 

0
ui

xi





,    (2)

   

where, ui  
represents the filtered velocity component, p is the filtered pressure, ρ is the 

fluid density and ν  is the kinematic viscosity of the flow. The flow geometry is shown in 
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Fig. 1. In the Navier-Stokes equation, τij  is the SGS Reynolds stress tensor. The effect of 

the SGS field, ui in LES appears through τij  which is defined by 

 
τ u u u ui j i jij   .    (3) 

τij is the unresolved term and must be modeled. The models used to resolve τij  are called 

SGS models. The two SGS models employed in the present study are the Standard 

Smagorinsky model [16] incorporating with the wall-damping function and Dynamic 

Smagorinsky model [22] with modification by Lilly [23]. Such a model transfers the 

effect of the SGS field on the filtered field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic geometry of plane channel flow. 

 

2.1. Standard Smagorinsky model (SSM) 

 

In this model, ijτ  is proportional to the filtered local strain rate tensor, Sij as follows: 

 τ = 2ν Ss ijij  ,    (4) 

where, 
1

2

uu jiSij
x xj i

 
  
  
 

. The proportionality factor, Sν  is the SGS eddy viscosity 

which is defined as   

  2Δν = C Ss s ,    (5) 

where CS is the Smagorinsky constant whose value is commonly used to be 0.1 for 

channel flow,
 

 1/ 3
x y z    

 
is the width of the grid filter, and 2S S Sij ij  is 

the norm of the filtered strain rate tensor.  

In this study the SSM is modified incorporating with the Van-Driest damping 

function, Sf  [13] in Sν  as follows: 

Flow 

z, uz 

x, ux 

z, uz 

y, uy 
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 2C f Ss s s   ,    (6) 

where 1 exp
S

y
f

A

 
   

 
 

 is used to reduce the growth of small scales near the wall in 

which A
+  

= 25 and  y
+
  is the distance from the wall in viscous wall units.  

 

2.2. Dynamic Smagorinsky model (DSM) 

 

The Smagorinsky closure for τij  is given by 

 

1
2

3
ij ij kk S ijS      ,    (7) 

where Sν  is defined in Eq. (5) and 1ij   if i = j and zero otherwise. The quantity CS in 

Sν  is the Smagorinsky coefficient and Δ
 
is the grid filter scale. In this model, the 

coefficient CS is determined locally in time and space by computing the relations given as: 

 
12

22

M lij ij
C

S
M Mij ij




,    (8) 

where     | ̅|  ̅ 
̃    | ̅|̃  ̅ 

̃    
 ̃

 
  

 
,     (9) 

and
 
    ( ̅  ̅  ̃   ̅ ̃ ̅ ̃)  

 

 
     ( ̅  ̅  ̃   ̅ ̃ ̅ ̃),   (10) 

in which a test filtering operation is indicated by tilde, α





 is the ratio of the test to grid 

filter widths, and “ ” represents an averaging operation. The test filtering is carried out 

with a sharp cutoff filter. Numerical tests show that an optimal value of α  is 2. 

 

3. Numerical Methods 

 

The numerical code is written in a staggered grid system [9,10] in Cartesian coordinates. 

This code is based on a finite difference formulation [9,10] with the second order 

accuracy in space and a low-storage explicit Runge-Kutta method with the third order 

accuracy [20] in time. The spatial and temporal schemes are shortly described in our 

previous papers [9,10]. The pressure-velocity coupling is based on the simplified marker-

and-cell (SMAC) method proposed by Johnson et al. [24]. In this method, the Poisson 

equation for pressure is solved to find the pressure potential which is used to correct the 

velocity components and pressure simultaneously. The Poisson equation is solved 

iteratively by a Preconditioned Incomplete Cholesky Decomposition Conjugated Gradient 

method.  
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4. Computational Parameters 

 

The flow domain is a rectangular box with a streamwise, wall normal and spanwise size of 

π2 δ , 2δ  and πδ  respectively, where δ is the channel half height. The domain is 

discretized by 32×64×32  grid points in the corresponding size. The grid spacings in the 

stream-wise and span-wise directions are uniform which are 116x   and 58z    

respectively, in wall units. In the wall normal direction  1 1y    , the grid spacings 

have been done non-uniform by stretching the grid using a hyperbolic-tangent type 

stretching function [25]: 
 

  
 

2
tanh 1

, 0, 1, ,
tanh

j

N
Y j j N





  
  

  
    ,   (11) 

 

where the stretching parameter, γ is let 2.25. In this direction, minimum grid spacing 

exists at the immediate vicinity of the wall which is 2.12y   in wall unit, and the 

maximum grid spacing is 42.14y   wall unit which exists at the central position of the 

channel. The superscript „+‟ indicates a dimensionless quantity scaled by the wall 

variables; e.g. +x = x u / ντ . A sample of grid generation in the given domain is shown in 

Fig. 2. In this flow domain the simulation is performed at a Reynolds number, 

= 590Re = u δ / ντ τ  which is based on δ and the wall shear velocity, uτ. To get fully 

resolved turbulence scales from this simulation the computation is executed up to time, 

= Δt n t , where n is the number of time step and Δt is the time increment. The simulation 

is carried out with a non-dimensional time increment, ∆t = 0.002 which maintained CFL 

numbers [9,10] 0.755 and 0.817 for the LES with SSM and LES with DSM approaches 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A sample of grid generation in a plane channel. 
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5. Boundary Conditions 

 

Boundary conditions for the two LES approximations are same. Many flows that have 

been calculated by DNS and LES approximations allow periodic boundary conditions in 

one or more directions. Periodic boundary conditions are easy to implement and efficient. 

In this study, periodic boundary conditions are applied in the stream-wise and span-wise 

directions. The wall boundary condition is no-slip. In the staggered grid system, additional 

nodes are set up surrounding the physical boundaries. The calculations are done at the 

internal nodes only. At the outside nodes of the solution domain the values of the velocity 

components are equated to the values of the nearest node just inside the solution domain 

[26]. For pressure variable, the periodic boundary conditions are used in the stream-wise 

and span-wise directions. But, in the wall normal direction just outside the solution 

domain the values of pressure are determined by assuming a zero gradient [27]. 

 

6. Results and Discussion 

 

6.1. Turbulence statistics 

 

In this subsection we calculate some essential turbulence statistics in the given domain of 

the 3D turbulent channel from the computed flow fields of the two LES approximations. 

The initial flow field of this simulation is the random solenoidal velocity field. In a plane 

turbulent channel flow the boundary layer can be split mainly into two parts. One is inner 

or near wall region and another is outer region. Each of these regions can be divided into 

several layers corresponding to different types of dynamics. In the inner region, the 

dynamics is dominated by viscous effects and in the outer region, it is controlled by 

turbulence. For canonical boundary layer case, the inner region contains viscous sub-layer 

( 5y  ), buffer layer ( 5 30y  ) and part of the logarithmic inertial layer (
+y >30 ; 

y/δ << 1) [13]. The outer region contains the rest of the logarithmic inertial layer and the 

wake region. In order to justify the performance of the two LES approximations, the 

statistical results are compared with DNS data of Moser et al. [1] and Kim et al. [2]. For 

comparison, the DNS data is represented by a solid line, LES results using SSM (LES-

SSM) by a dashed line and the LES results using DSM (LES-DSM) are indicated by a 

dashed dot dot line. 

 The profiles of mean velocity normalized by the wall-shear velocity corresponding to 

the lower half of the channel from the LES-SSM and LES-DSM approaches are shown in 

Fig. 3. The mean velocity is calculated by  

 

 
ux

ux
u

  .  (12) 
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Fig. 3. Mean velocity profiles in wall units. 

 

 From this Fig. it can be observed that the LES-DSM profile over predicts the DNS 

profile in the whole range. Although in the viscous sub-layer and part of the buffer layer 

the LES-DSM profile shows less discrepancy from the DNS profile, but in rest of the 

range there exists a noticeable discrepancy between these two profiles. On the other hand, 

the LES-SSM profile is almost collapsed with the DNS profile in the viscous sub-layer. 

Hereafter in the buffer layer the LES-SSM profile is seen to be under predicted. Finally, in 

rest of the domain the LES profile over predicts the DNS profile. Nonetheless, from this 

figure it has to be noted that among the two LES profiles the LES-SSM profile shows 

closer agreement with the DNS profile in most of the region.   

LES profiles of non-dimensional root mean square (r.m.s.) velocity components for 

SSM and DSM are displayed in Figs. 4(a, b, c). The LES profiles are compared with the 

DNS data in the lower half of the channel. The non-dimensional root mean square 

velocity components in LES can be defined as  

 

 
22

. . .x r m s x xu u u u
   ,   (13) 

2
2

. . .y r m s y yu u u u
   ,   (14) 

22

. . .z r m s z zu u u u
   .   (15) 

 Profiles of stream-wise root mean square velocity are shown in Fig. 4(a). This Fig. 

reveals that in the viscous sub-layer there is hardly noticeable difference between the DNS 

and LES profiles. After that, in rest of the range the LES profiles over predict the DNS 

profile which is very common in LES, because for this statistic most models will over 

predict the DNS data. Note that peak values of these profiles take place at the near wall 

region. In this region the DSM shows the largest over prediction.   
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Fig. 4. Root mean square velocity profiles in wall units. 

 

Profiles of wall normal and spanwise root mean square velocity are shown in Fig. 4(b) and 

Fig. 4(c) respectively. In LES it is very usual that the wall normal and spanwise root mean 

square velocity profiles will under predict the DNS profile. Our computed LES profiles 

clearly reveal that case. 
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Fig. 5. Reynolds stress profiles in wall units. 

 

 Fig. 5 depicts the non-dimensional Reynolds stress, 

' '

2

x yu u

u
  profiles for different 

approximations in the channel half width. From this figure it can be observed that at the 

near wall region the LES profiles under predict the DNS profile. On the other hand, in the 

outer region the LES-DSM profile over predicts the DNS profile, whereas the LES-SSM 

profile is almost collapsed with the DNS profile. In a fully developed channel flow this 

statistic appears to a straight line at an equilibrium state. Our computed LES profiles 

clearly maintain that case. However, among the two LES profiles the LES-SSM profile 

shows closer agreement with the DNS profile in most of the calculation domain. For this 

statistic a quantitative comparison between the DNS and LES results at some positions of 

the channel have been shown in the following Table.  

 
Table 1. Comparison between DNS and LES results in Reynolds stress. 
 

y+ DNS LES-SSM LES-DSM 

4.24 0.08 0.03 0.04 

21.58 0.75 0.47 0.66 

39.06 0.86 0.69 0.83 

60.00 0.85 0.77 0.85 

101.78 0.80 0.76 0.82 

153.80 0.73 0.71 0.75 

224.21 0.60 0.59 0.63 

343.67 0.40 0.39 0.42 

449.64 0.22 0.22 0.24 

575.68 0.01 0.01 0.02 

 

Table 1 reveals that initially at the near wall region the LES-DSM profile shows closer 

agreement with the DNS profile than that of LES-SSM. At the position 60.00y   the 

LES-DSM profile coincides with the DNS profile. After this position the separation of the 
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LES-DSM profile from the DNS profile increases gradually up to a certain range. Then 

again the difference between these two profiles decreases until end of the range. On the 

other hand, from 60.00y   the discrepancy of the LES-SSM profile from the DNS 

profile decreases gradually and after 224.21y   these two profiles are almost collapsed. 

However, it is worth noting here that at the outer region the agreement of the LES-SSM 

profile with the DNS profile is better than that of LES-DSM.  

 Profiles of correlation coefficient of SGS velocity components, xu
 

and yu
 

corresponding to the channel full width for different approximations is presented in Fig. 6 

where the correlation coefficient is defined as 

. . . . . .

' '

x y

x r m s y r m s

 u u

u u


. From this figure it can be 

observed that the highest value of the LES profiles appears at the lower wall, while the 

lowest value is located near the upper wall. The LES results for this statistic are compared 

with the DNS data of Kim et al. [2], where the simulation was performed in a 

computational domain other than the π × ×π2 δ 2δ δ  with the Reynolds number, 

=180Reτ . Although, the difference between the Reynolds number of the present work 

and that of Kim et al. [2] is noticeable, but the pattern of the LES profiles is in good 

agreement with the DNS profile. In the Fig. it is important to note that among the two 

LES profiles the LES-SSM profile shows closer agreement with the DNS profile.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Correlation coefficient profiles of xu and yu . 

 

 Fig. 7 presents the profiles of SGS eddy viscosity normalized by the molecular 

viscosity of the flow at the stream-wise position x = 5 of the channel for the two LES 

approximations. The profiles are shown corresponding to the channel full width. This Fig. 

reveals that the normalized Sν  starts from zero at the wall for both the approximations. 

The higher values of these profiles are located near the position of lower and upper walls. 

The value of these profiles decrease with the increase of wall units around the centerline 

0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

DNS

LES-SSM

LES-DSM

y/

-u
' x
u

' y
/

u
x

r.
m

.s
.u

y
r.

m
.s

.

_
_
_



M. S. I. Mallik et al., J. Sci. Res. 12 (1), 39-53 (2020) 49 

 

of the channel. That is, the contribution of the Sν is more near the wall position. In this 

figure it has to be noted that among the two LES profiles the highest peak as well as the 

higher values of Sν  are more located for the LES-SSM approximation than that of LES-

DSM. 

 

     

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7. SGS eddy viscosity profiles at x = 5. 

 

6.2. Instantaneous distributions of stream-wise vorticity, velocity and shear velocity 

 

In this subsection the instantaneous distributions of the stream-wise vorticity (ωx ), 

stream-wise velocity ( xu ) and stream-wise shear velocity ( τux ) will be discussed both 

for the SSM and DSM. The distributions are presented by contour plots at the end of 

calculation time on the x-z plane. Contours of ωx  at the centerline x-z plane of the 

channel are shown in Fig. 8, which is defined as 

 
yz

x

uu
ω

y z


 
 

.  (16) 

 

 

 

 

 

 

 

 

Fig. 8. Instantaneous distributions of ωx in x-z plane for (a) LES-SSM, and (b) LES-DSM. 
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scattered locations in the whole computed flow field for both the LES approximations. It 

is also noticeable that in both the contour plots the contribution of the positive values of 

ωx is more than that of the negative values. In some regions ωx  takes zero value. 

Comparing the results of ωx with SSM and DSM, it can be observed that the existence of 

the regions of the positive values is more for DSM.  

 

   

 

 

 

 

 

 

Fig. 9. Instantaneous distributions of xu in x-z plane for (a) LES-SSM, and (b) LES-DSM. 

 

 The contours of instantaneous stream-wise velocity on the same plane for the two LES 

approaches are shown in Fig. 9. In this figure the values of xu  ranged between 19.5 and 

25. The highest value is indicated by a red color, while the lowest value by a blue color. 

From these contour plots, it can be observed that xu  takes a value in the range 

19.5 21.5xu   in most of the regions in Fig. 9(a). On the other hand, in Fig. 9(b) in 

most of the regions xu  takes a value in the range 23 25xu  . That is, the contribution of 

xu is very strong for DSM. In both of the figures the appearance of the regions of the 

medium values of xu is significant.  

 

   

 

 

 

 

 

 

Fig. 10. Instantaneous distributions of uxτ in x-z plane for (a) LES-SSM, and (b) LES-DSM. 

 

Contours of instantaneous uxτ  distribution at the immediate vicinity of the wall on 

the x-z plane both for SSM and DSM are displayed in Fig. 10, where the uxτ is calculated 

from Eq. (17). 
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In this equation, ρ is the density of the fluid and τx is the streamwise shear stress. Fig. 10 

reveals that uxτ takes a value in the range 0.7 2xu   . The appearance of the maximum 

value of uxτ is not so frequent in the whole computed flow field for all the two cases, 
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the existence of the regions of the medium values of τux is significant. Comparing the 

results of τux in Fig. 10(a) and 10(b), it is noted that although the appearance of the 

regions of the highest and lowest value are more located in Fig. 10(a) for SSM, but the 

overall contribution of τux is more for DSM.   

 

6.3. Visualization of instantaneous flows 

 

The iso-surfaces of the second invariant, Q of velocity gradient tensor at the end of 

computation for the two LES approaches are presented in Fig. 11. The second invariant is 

defined as [11]: 
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are respectively the symmetric 

and asymmetric part of the velocity gradient tensor: 
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Fig. 11. Iso-surfaces of the second invariant (Q = 5) of velocity gradient tensor for (a) LES-SSM, 

and (b) LES-DSM. 

 

The flow visualized region is the whole calculation domain and the level of the iso-surface 

is 5 for the both cases. This flow visualization based on Aij  provides direct linkage 

between the inner and outer regions of the turbulent flow field. From this figure it can be 

observed that a number of tube-like vortical structures appear in the LES data both for the 

SSM and DSM which are randomly distributed over the turbulent flow field. But in the 
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SSM case, the appearance of the vortical structures decreases from the DSM case 

especially near the boundary of the channel.   

 

7. Conclusion 

 

Large eddy simulations of turbulent plane channel flow have been performed using 

32×64×32  grid points at a Reynolds number, 590 based on the channel half width and 

wall shear velocity. The SGS models used for the LES simulation are the SSM and DSM. 

Since, in DSM the coefficient CS is determined locally in time and space, so DSM 

requires more computational cost than SSM. In order to assess the performance of the 

LES with SSM and DSM, essential turbulence statistics have been calculated and 

compared with the DNS data of reference. After analyzing the results in the statistical 

field we have found that in most of the cases SSM gives a good agreement with the DNS 

results. Although in few cases DSM performs better especially at the near wall region, but 

the overall performance of SSM is better than DSM, and the reason behind the less 

performance of DSM than SSM may be the limitations of resolution. Among the two SGS 

models the effect of the SGS eddy viscosity is more located for SSM especially at the near 

wall position. By examining the instantaneous distributions at the centerline x-z plane of 

the channel, we have observed that in the vorticity distribution the existence of the regions 

of positive values is more located for DSM, and in the velocity distribution the 

contribution of the higher values is very strong also for DSM. Instantaneous distribution 

of the stream-wise shear velocity at the immediate vicinity of the wall show that the 

appearance of the regions of the lowest and highest value is more located in the contour 

plot for SSM, but the overall contribution of the higher values is more for DSM. One of 

the distinctive features of the existence of vortical structures in the computed flow fields is 

that for the LES-SSM approach the vortices are generated less densely near the boundary 

of the channel than that of the LES-DSM approach. 
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