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Abstract 
 

In this paper, we have investigated Kantowaski-Sachs cosmological model with bulk 

viscous and cosmic string in the framework of Teleparallel Gravity so called )(Tf  gravity, 

where T denotes the torsion scalar. The behavior of accelerating universe is discussed 

towards the particular choice of .)( mTTTf    The exact solutions of the field 

equations are obtained by applying variable deceleration parameter which is linear in time 

with a negative slope. The physical behavior of these models has been discussed using 

some physical quantities. Also, the function of the torsion scalar for the universe is 

evaluated. 
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1.   Introduction 

 

An awesome abundance of observational evidence in favor the late-time accelerating 

expansion does not fit within the framework of General Relativity (GR). The proposals 

that have been put forward to explain this observed phenomenon can basically be 

classified into two categories. First, an exotic component with negative pressure called 

mysterious energy or Dark Energy (DE) introduce in to Einstein’s general relativity and 

second is by changing the gravity law through the modification of action in GR. 

 Among the various modifications of GR, )(Rf gravity where the gravitational 

Lagrangian is given by an arbitrary function of the Ricci scalar, attracting more and more 

attention during the last decade. A complete review on )(Rf gravity is given by Copeland 
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et al. [1], Chiba et al. [2], Nojiri and Odintsov [3,4]. Another modification of standard GR 

is ),( TRf gravity where the gravitational Lagrangian is given by an arbitrary function of 

the Ricci scalar and the trace of the stress energy tensor [5]. Using this theory Harko et al. 

[6] have discussed several aspects of this theory including FRW dust universe. Sharif and 

Zubair [7] found that the picture of equilibrium thermodynamics is not feasible in ),( TRf

gravity even if we specify the energy density and pressure of dark components thus the 

non-equilibrium treatment is used to study the laws of thermodynamics in both forms of 

the energy momentum tensor of dark components. Katore et al. [8] investigated some 

cosmological model with DE source in ),( TRf gravity. Chandel and Ram [9] generated 

new classes of solutions of field equations starting from known solutions for an 

anisotropic Bianchi type-III cosmological model with perfect fluid in ),( TRf gravity. 

Chaubey et al. [10] has obtained a new class of Bianchi type cosmological models in

),( TRf gravity, while, Sahoo et al. [11] investigated an axially symmetric space-time in 

the presence of a perfect fluid source within the frame work of ),( TRf gravity. Recently, 

Bhoyar et al. [12,13], Chirde and Shekh [14,15] have investigated some cosmological 

models with some fluids within the frame work of ),( TRf gravity. 

 Another alternative goes back to 1928 with Einstein’s attempt to unify gravity and 

electromagnetism through the introduction of a tetrad (vierbein) field, with the concept of 

absolute parallelism or teleparallelism [16] known as Tele parallel Gravity (TG) or )(Tf

gravity. The gravitational field equation of TG is described in terms of torsion instead of 

curvature [17]. An advantage of )(Tf theory is that its field equation is only second order. 

Various aspects of )(Tf theory have been investigated in the references [18-20]. Jamil et 

al. [21] tried to resolve the Dark Matter (DM) problem in the light of )(Tf gravity and 

successfully obtained the flat rotation curves of galaxies containing DM as component 

with the density profile of DM in galaxies. Also gives the interacting DE model in the 

framework of same theory for a particular choice of )(Tf . Particle creation in flat 

Friedman Robertson Walker universe in the framework of )(Tf gravity was investigated 

by Setare and Houndjo [22]. Chirde and Shekh [23-25] investigated some cosmological 

model in )(Tf gravity. Very recently, Bhoyar et al. [26] discussed stability of accelerating 

Universe with linear equation of state in )(Tf  gravity using hybrid expansion law. Aygün 

et al. [27] investigated Teleparallel energy–momentum distribution of various black hole 

and wormhole metrics. 

 According to the prediction of grand unified theory (GUT), after the Big-bang the 

universe may have undergone a series of phase transitions as its temperature lowered 

below some critical temperature [28]. It can provide grow to topologically established 

defects such as strings, domain walls, and monopoles. Surrounded by these cosmological 

structures, cosmic strings are the most incredible consequences [29], because it gives rise 

to density perturbations, which might have been found during a phase transition in the 

early universe which lead to formation of galaxies [30]. The study of gravitational effects 

from such strings will be interesting because of the cosmic strings coupled stress-energy 

to the gravitational field. The treatment of strings in GR (in view of massive strings as the 

geometric strings (massless) with particles attached along their expansions) has been 
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initially given by Letelier [31]. Along with sahoo [32] investigated Cosmic Strings 

Coupled with Maxwell Fields in Bimetric Relativity on Kantowski-Sachs space-time. 

Mahanta et al. [33] discussed about the bulk viscous string cloud with strange quark 

matter in Brans-Dicke theory. Sahoo et al. [34] talk over Bianchi Type-III String 

Cosmological Model with bulk viscous fluid in Lyra Geometry.  

 Most of the researchers assume cosmological models with perfect fluid or pressure less 

(dust) distribution but to have realistic models we should consider the presence of a 

material distribution other than a perfect fluid. At the early phase evolution of the universe 

when neutrino decoupling occurred, the matter behaved like a viscous fluid (viscosity 

mechanism in cosmology can account for high entropy per baryon in the present 

universe). Also, the viscosity is associated with GUT phase transition and string creation. 

Santos et al. [35] have derived exact solution of field equations by considering, viscous 

coefficient as a power function of mass density. Wang [36] have discussed cloud string 

with bulk viscosity within the frame work of LRS Bianchi type-I and Kantowski-Sachs 

string model. Integrability of the cosmic string with bulk viscous fluid had investigated by 

Yadav et al. [37].  

 

2.  (T)  Gravity Formalism 

 

In this section we give a brief description of the (T)  model and a detailed derivation of 

its field equations. 

 Let us define the notations of the Latin subscript as these related to the tetrad field and 

the greek one related to the space-time co-ordinates. For a general space-time metric, we 

can define the line element as 

 


 dxdxgdS 2
                                           (1) 

This line element can be converted to the Minkowski’s description of the transformation 

called tetrad, as follows 

 ji
ijdxdxgdS 

 2
                   (2) 

 



  dxeedx iii
i     , ,                                              (3) 

where  i j  is a metric on Minkowski space-time and  i j  = diag[1,1,1, ,1] and 

 



 i
i ee  or 

j
i

j
i ee 
  .  

 The root of metric determinant is given by eeg i  ]det[  . For a manifold in 

which the Riemann tensor part without the torsion terms is null (contribution of the Levi-

Civita connection) and only the non-zero torsion terms exist, the Weitzenbocks 

connection components are defined as  

 





 i
ii

i eeee  .                                 (4) 

which has a zero curvature but nonzero torsion. Through the connection, we can define 

the components of the torsion tensors as 
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  ii
i eeeT 







                                   (5) 

The difference between the Levi-Civita and Weitzenbock connections is a space-time 

tensor, and is known as the contortion tensor: 

  






 TTTK 










2

1
                   (6) 

For facilitating the description of the Lagrangian and the equations of motion, we can 

define another tensor 
S  from the components of the torsion and contortion tensors, as 

  









  TTKS 










2

1
                  (7) 

The torsion scalar is  

 




 STT   .                    (8) 

Now, we define the action by generalizing the Teleparallel Theory i.e. )(Tf  theory as 

   xdeLTfTS matter
4  )(                     (9) 

Here, )(Tf  denotes an algebraic function of the torsion scalar. Making the functional 

variation of the action (9) with respect to the tetrads, we get the following equations of 

motion 

       















  TfTfSTSeeeeTfS Ti

i
TT 4

4

1
11  

             (10) 

The field equation (10) is written in terms of the tetrad and partial derivatives and appears 

very different from Einstein’s equations. 

where 

T  is the energy momentum tensor, dTTdffT /)(  and by setting  0)( aTf

constant this is dynamically equivalent to the GR. 

 

3. Metric, Kinematical Parameters and Field Equations 

 

The line element of homogeneous anisotropic Kantowaski-Sachs space-time is given by 

  2222222 dzdyBdxAdtds                   (11) 

where the metric potentials A  and B  be the functions of time t only.  

The corresponding Torsion scalar is given by 

 















2

2

2 2
B

B

B

B

A

A
T


                 (12) 

Let us consider the matter content energy-momentum tensor of a bulk viscous fluid 

containing one dimensional cosmic string as 

  






  guuxxuuT                   (13) 
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here is the rest energy density for a cloud of massive strings with particle attached along 

its extension given by ρ  

   p                    (14) 

p being the particle energy density,  the string tension density may be positive or 

negative, u the four velocity for the cloud of particles and x the four vector which 

represents the strings direction. Thus we have,  

 



 xxuu  1  and 

 ,0
 xu  

together with commoving co-ordinates  

  1,0,0,0u  and ,0,0,0,
1











A
x                 (15) 

From the equation of motion (10), Kantowaski-Sachs space-time (11) for the fluid of 

stress energy tensor (13) can be written as 

       












 pkfT
B

B

B

B

A

A

B

B

B

B
ffT TTT

2

2

2

  414 


,            (16) 

      





















 pkfT
B

B

A

A

B

B

A

A

B

B

B

B

A

A
ffT TTT

2

2

2

  2312 


,       (17) 

     )(214 2

2

2

k
B

B

A

A

B

B
ffT T 
















.               (18) 

where the dot (  ) denotes the derivative with respect to time t. 

We define average scale factor and volume respectively as 

 2ABV                     (19) 

 The generalized mean Hubble parameter which expresses the expansion rate of the 

space-time, can be given as 

  ,
3

1
321 HHHH                   (20) 

where 321  , , HHH  are the directional Hubble parameter in the direction of x, y, and z-axis 

respectively. 

 To discussed whether the models either approach isotropy or not, we define an 

anisotropy parameter of the expansion as  

 

2
3

13

1
 







 


i

i
m

H

HH
A .                 (21) 

The expansion scalar and shear scalar respectively are defined as follows 
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C

C

B

B

A

A
u


 

 ; ,                 (22) 

 mAH 22

2

3
 .                  (23) 

 Another important dimensionless kinematic quantity is the deceleration parameter 

(DP), which shows whether the universe exhibits accelerating volumetric expansion or 

not: 

 









HdH

d
q

1
1 ,                  (24) 

For 01  q , 0q & 0q , the universe exhibit accelerating volumetric expansion, 

decelerating volumetric expansion and constant-rate volumetric expansion respectively. 

 

3.1. Solution of field equation 

 

For any physically relevant model, Hubble parameter and deceleration parameter are the 

most important observational quantities in cosmology. During 1960s and 1970s, redshift 

magnitude test has made sure the history about DP which lies between 10  q  and draw 

very categorical conclusion that the universe is decelerating. Soon after Berman and 

Gomide in 1983, 1988 get value 1q , and since 01  q corresponds to accelerating 

expansion in his proposed a law of variation for Hubble parameter, but the recent 

theoretical analysis of SNe-Ia surveys, LSS and CMBA spectrum strongly indicate that 

our Universe is spatially flat and has a phase transition i.e. past deceleration to recent 

acceleration. So, In order to match the results with this observation, many authors have 

define different types of solutions (corresponds to DP and scale factor). Chirde and Shekh 

[25] offered the DP, which is linear in time with a negative slope as, 

 









Hdt

d

R

RR
q

1
1

2


,                 (25) 

this equation can be integrated to give the average scale factor as 

 
  
 


dtq

dt
R

1
exp ,                 (26) 

where  be the arbitrary constant. 

 For the possible explicit determination of R , we have to integrate above equation (26). 

Depending on the choice for the values of deceleration parameter q , there are two 

different ways to integrate 

(i) According to Berman q is taken to be a constant either positive or negative which 

provides an explicit function of R and 

(ii) According to new law q is taken to vary with cosmic time for an explicit 

determination of R which leads to a possible choice of q as 
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 )1(
2

 b
t

a
q ,                  (27) 

which is the main ansatz of the paper. Here 0a is a parameter having the dimension of 

square of time and b is a dimensionless constant. 

 

 

 

 

 

 

 

 

 

Fig. 1.  Deceleration parameter versus time. 

Obviously, the different values of a  and b will give rise to different models. For 1b

corresponds to a decelerating model, for 10  b it corresponds to standard accelerating 

model. 

Equation (27) can be integrated to give the time variation of the scale factor as 











































b

a

b
tt

tdt
R

 2

1
exp ,                              (28)  

The integral appearing in (28) cannot be evaluated for arbitrary values of the constants. 

Setting 0 in (28) and integrating we obtain the average scale factor as 

 
b

b

a
tR

2
1

2








 ,                  (29) 

For this model, the corresponding metric coefficients BA  and  comes out to be 

 
)2(2

3

2












nb
n

b

a
tA ,                 (30) 

 
)2(2

3

2












nb

b

a
tB .                 (31) 

Using the values of metric coefficients, Kantowaski-Sachs space-time with bulk viscous 

and cosmic string in the framework of )(Tf  gravity takes the form 
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-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

 

 



256 Accelerating Universe with Viscous Cosmic String  

 

  222
)2(2

6

22
)2(2

6

222 sin  dd
b

a
tdr

b

a
tdtds

nbnb
n






















.            (32) 

It is observed that the model hag no singularity and expands with time.  

 

3.2. Physical parameters 

 

Energy density and pressure of the universe becomes 

 
    m

mm

b
at

tpm

b
at

pt
k

22

2

2

2
2 )21()1(












 ,                (33) 

 

     
b

atb

tk

b
atnb

b
atnb

pk
m














2

2

222

2

222

12 3

)2()2(


.             (34) 

For the specification of  we assume that the fluid obeys an equation of the state of the 

form 

 p ,                   (35) 

where 10   . 

In most of the investigations, bulk viscosity is assumed to be a simple power function of 

the energy density (see, for examples, Pavon [38], Maartens [39]): 

 rt  0)(  ,                   (36) 

where 0 and r are constants. 

If 1r , Eq. (36) may corresponds to a radiative fluid. However, more realistic models 

are based on n lying in the regime 210  r . On using (36) in (34), we obtain the 

following relation for proper pressure: 

 

     
b

atb

tk

b
atnb

b
atnb

pk
r

m














2

0
2

222

2
222

12 3

)2()2(


.             (37) 

 

3.3. Model I: Solution for 0)(  t  

When 0r , equation (36) reduces to constant)( 0  t . Hence in this case Energy 

density and string tension density leads to 

 

         






































b
atb

tk

b
atnb

b
atnb

b
at

tm

b
at

t
k

mm

m

2

0
2

222

2

222

1

22

22
0

22

2
02 3

)2()2(

)21()1(

)1(

1 




  

(38) 
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      222

221
0

2222

221
03

2222

32

)2(

)1)(1(4

)2(

2

)2(

2
















m

mm

m

mm

b
atnb

tmmm

b
atnb

tm

b
atnb

k


 .  (39) 

 

3.4. Model II: Solution for  0)( t  

When 1r , equation (36) reduces to  0)( t . Hence in this case Energy density, 

particle energy density and string tension density leads to 
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









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











mm

m
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atnb

b
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b
at

tm

b
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t
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atb
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k
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2
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22
0
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2
0

2

0
2
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)2()2(

)21()1(3
1

)1(
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


(40) 
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The Torsion scalar becomes 
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3.5. Kinematical parameters 

 

The spatial volume becomes 
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 In our investigations we observed that the spatial volume of the universe starts with a 

constant volume at 0t and with the revival of time it is expanding and increasing, 

when t  the spatial volume V . Thus inflation is possible in the universe. This 

shows that the universe starts evolving with constant volume and expands with cosmic 

time. 

The mean Hubble parameter and the expansion scalar turn out to be 
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 From the equations (45) and (46) it is observed that the mean Hubble parameter, 

expansion scalar are the functions of time, at initially 0t both are zero and constant at 

infinite expansion as t . This shows that the universe is expanding with the increase 

of cosmic time but the rate of expansion decrease which shows that the universe starts 

evolving with a constant volume with an infinite rate of expansion. The behavior of 

Hubble’s parameter and expansion scalar of the universe verses cosmic time t is shown in 

the Fig. 2.  

 

 

 

 

 

 

 

 

 

Fig. 2.  Hubble’s parameter and expansion scalar versus time. 

The mean anisotropy parameter and shear scalar are given by 

 
 

  
b

atn

n
Am






22

23
1

2

,                 (47) 

 
 

    

2

22

2  1
2

23

2

3 2



































b
atb

t

b
atn

n
 .               (48) 

 Since, the evolution of the universe starts with constant volume and the rate of 

expansion is infinite. As t increases, the spatial volume increases but the expansion scalar 

decreases. Hence, the rate of expansion of the universe decreases as the time increases. 

When t , the spatial volume becomes infinitely large but the expansion stops and 
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shear becomes zero. The graphical performance of Hubble parameter is exposed in the 

Fig. 2. 

 Fig. 3 demonstrates the behavior of energy density of the universe verses cosmic time t 

in the evolution of universe as representative case with appropriate choice of constants. It 

is observed that the energy density of derived model is always positive. At an initial stage 

0t , energy density is also zero i.e. 0 , with the expansion for some interval of 

time it is increases but for hole interval it is decreases up to a small positive value (nearly 

equal to zero). 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Energy density versus time. 

Coefficient of bulk viscosity 
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 Initially for some interval of time the coefficient of bulk viscosity is negative and 

increasing but for whole interval which is positive decreasing function of time and final it 

approaches to a constant quantity which is near to zero. This is in good agreement with 

the physical behavior of   the shown in Fig. 4. 

 

 

 

 

 

0 2 4 6 8 10 12
0

5

10

15

20

25



260 Accelerating Universe with Viscous Cosmic String  

 

 

 

 

 

 

 

 

 

 

Fig. 4. Bulk viscous coefficient versus time. 

 

4. Conclusions 

 

In our investigations we observed that inflation is possible in the universe, the volume 

starts with a constant volume at 0t and with the stimulation of time it is expanding and 

increasing, when t  the spatial volume V . The mean Hubble parameter, 

expansion scalar are the functions of time and confirmed that the universe is expanding 

with the increase of cosmic time but the rate of expansion decrease which shows that the 

universe starts evolving with a constant volume with an infinite rate of expansion. The 

evolution of the universe starts with constant volume and the rate of expansion is infinite, 

the spatial volume becomes infinitely large but the expansion stops and shear becomes 

zero. 

 It is observed that the energy density of the derived model is always positive as 

representative case with appropriate choice of constants. At an initial stage 0t , energy 

density is also zero i.e. 0 , with the expansion for some interval of time it is increases 

but for hole interval it is decreases up to a small positive value (nearly equal to zero).The 

coefficient of bulk viscosity spectacles the same deeds as that of the energy density of the 

Universe. 
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