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Abstract 

 

After revival of the concept of minimal length, many investigations have been devoted, in 

literature, to estimate upper bound on minimal length for systems like hydrogen atom, 

deuteron etc. We report here a possible origin of minimal length for atomic and nuclear 

systems which is connected with the fundamental interaction strength and the Compton 

wavelength. The formula we appear at is numerically close to the upperbounds found in 

literature. 
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1.   Introduction 

 

The pursuit to know completely the nature of space-time in modern times dates back to 

the time of Einstein’s and Heisenberg’s epic works. Heisenberg first noticed that a non-

zero minimal length is inevitable, but he could not incorporate it in a consistent theory [1]. 

But the history of a minimal length is becoming rich day by day. In the last decade of the 

20th century, it became clear how a minimal length appears in quantum gravity [2], string 

theory [3], etc., and through the works of Kemf et al. [4-6], a deformed quantum 

mechanics appeared which incorporates a non-zero minimal length within a generalized 

uncertainty principle (GUP). The generalized uncertainty principle (GUP) is usually 

expressed as 

  2
1

2
ppx  

                                                                               (1) 

where β is a small parameter. Equation (1) leads to the minimal length  minx . 

Originally, this minimal length was envisaged as a gravitational induced uncertainty and 
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the scale of this length was usually understood to be of the order of Planck length 

 m3510 . But Eq.(1) contains the UV/IR mixing, whereby it is thought that the minimal 

length can be much larger than the Planck length.  

Brau [7] calculated the effect of a minimal length on the spectrum of the hydrogen 

atom and estimated an upper bound on minimal length inherent in H-atom which is of the 

order of m1710  . Thereafter, many authors devoted time in estimating upper bound on 

minimal length inherent in many quantum systems and a large variety of results appeared. 

However, for hydrogen-like systems the estimated value of minimal length falls around 

the value found by Brau. We have previously estimated [8] the upper bound on minimal 

length using deuteron quadrupole moment which is about m1610 . 

Due to this development of the matter, some authors indicated that minimal length 

may depend on the systems under consideration. Moreover, Kemf [9] revealed that non-

pointness of particles considerably affects energy spectrum of systems like harmonic 

oscillators, and Sastry [10] presented a theory of extended quantum particles where non-

pointness of particles is shown to lead to non-zero minimal uncertainty in position. 

Influenced by these works, we are going to show here that a minimal length could be 

associated with every quantum system because of the non-pointness of the particles 

manifested by their being part of a system and by how their positions are measured. These 

two ingredients are inseparably associated with every quantum system and with the 

conceptual framework of Heisenberg uncertainty principle. And one obviously finds a 

minimal length to be operational in every quantum system when non-pointness of 

particles whose positions are measured is considered within the framework of quantum 

measurement. Through due consideration of non-pointness of particles, we arrive at a 

formula for minimal length. The work we present here is original and of fundamental 

importance for quantum physics. The paper is organized as follows: In Section 2, we 

derive the formula for minimal length and present some numerical values. In section 3, we 

conclude. 

 

2. Minimal Uncertainty in Position  

 

According to Heisenberg’s original thought experiment [11], a particle’s position is 

measured through the interaction of a photon with the particle. The photon gets scattered 

and the scattered photon is viewed through a microscope which immediately leads to the 

ordinary uncertainty relation 

2


 px

                                                                                              
(2)  

Here, however, the particle, say electron, is considered as a point particle. But the 

interaction which is used to detect the electron always finds the particle as non-point like. 

This is manifest through the finite cross-section of the interaction which is always like 

Compton scattering. Every impingement reveals a finite size of the electron given by the 

low-energy limit of Compton scattering cross-section [12], 
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where e is the charge of the electron and em  is the mass of electron. This is actually the 

Thomson scattering cross-section, the low energy limit of the Compton cross-section. So, 

a measure of non-pointness of the electron associated with Eq. (3) is given by a minimal 

length, 

cmc

e
x

e





2

min 

                                                                                       

(4)  

c  

where α is the fine structure constant and 
c is the reduced Compton wavelength of the 

electron. 

Next, consider the H-atom. When energy of H-atom is considered, the particle whose 

energy is measured is electron and its size is linked with the size of the orbit. In the 

ground state, the size of the electron, 
c

ecm



 and the radius of the orbit, Bohr radius 

0a  are linked by  


0a

c
 

137

1
                                                                                            (5) 

If the electron is in a higher excited state the ratio 

n

c

r

 gradually approaches zero. Here lies 

another measure of non-pointness of the electron. This measure here is largest in the 

ground state. So, minimal size of the electron or it’s non-pointness is not fixed if we 

consider the system where it is. The measure of this non-pointness varies between the 

minimum zero, which says it is really point like, and the maximum,  which says it is 

somewhat non-point like. But as long as we consider the electron in the H- atom this 

measure is never zero. For other particles in other systems, the measure of this non-

pointness may turn out bigger. For example, in deuteron, the measure of non-pointness is 

more and can be taken to be 106.0s  , where 
s  is the coupling constant of strong 

interaction. We may find 
s  by dividing the Compton wavelength of a nucleon by the size 

of deuteron (radious of deuteron, mrd

1510964.1  ). This value is surprisingly very 

close to the value  1.0s  in quantum field theory [12]. 

Now, in literature, the systems for which the minimal length is being reported are 

bound systems like harmonic oscillator, hydrogen atom, deuteron, etc. Originally, the 

minimal length appeared for systems that are in Planck scale. For all such systems, the 

minimal length can be linked with the two pieces of non-pointness discussed above.  

In case of the non-pointness associated with measurement through processes like 

Compton scattering, i.e., equation like Eq. (4),  we have taken the low- energy limit 

because the particle we consider is bound and we  wish to gather information by not 
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disturbing the particle much. The Thomson cross section above corresponds to the case 

where the electron is not imparted large recoil energy.  Moreover, a single scattering 

experiment with high incident photon energy would have sufficed to find the size of the 

particle in question, but the results of such experiment is not tractable much. That is why 

we propose the two pieces of non-pointness depicted above to be tied to find the minimal 

length. Now, for scattering experiment, the       is written as proportional to  c , 

where now    is the strength of interaction. For the non-pointness associated with the 

system where the particle is bound, i.e., equation like Eq. (5), we write         , 

where now    is the interaction strength corresponding to non-pointness due the system. 

We assume the minimal length to be proportional to both of those pieces. That is, 

        c and          .  We thus write  

          c                                                                                       (6) 

For hydrogen and deuteron, we can take both of the interaction strengths to be the 

same. And for hydrogen,   
137

1 and m
cme

c

c

131086.3 


 and 
minx  turns to be 

about m17102   , which is close to Brau’s value [7]. For deuteron, 1.0s and
c  

m
cmp

16101.2 
 . Thus for deuteron, 

minx  turns out to be about m18101.2  ,which is 

somewhat less than our previous value [8] and very close to the value that one can find 

using binding energy of deuteron [13]. For other systems, the two interaction strengths 

may not come out as the same and we have to compute the strengths considering the 

system and the experiment under question. For Planck scale system, mc

3510
 
and 

1p , where p  is the coupling constant for all the fundamental interactions at the 

Planck scale, and the minimal length turns out, as expected, to be the Planck length.  

Thus, we arrive at a value for minimal length for bound systems as given by Eq. (6) 

and get some confirmation of the formula (6) from literature as quoted above. Strictly 

speaking, formula (6) represents the upperbound on minimal length for bound systems 

and can be linked with the uncertainties of dynamical properties of such systems. 

However, a minimal length for every quantum system is inevitable which is clear from the 

discussion above and this minimal length can be fairly considered to be not more than that 

given by Eq. (6). For systems bound by fundamental interaction, Eq. (6) is easy to 

evaluate, but for other systems, further investigation is necessary. 

 

3. Conclusion 

 

Minimal length first appeared in string theory, quantum gravity, and related fields is the 

minimal uncertainty in position measurement of a quantum particle. In this paper, we have 

argued that a minimal length is inevitable in Heisenberg’s uncertainty principle. The long 

silence about minimal length after Heisenberg’s original formulation of the uncertainty 

principle, is due to its very small size. The most fundamental minimal length is of the 

Planck scale, but in bound systems like hydrogen atom, deuteron etc., the minimal length 
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can appear to be much bigger. A minimal length can be considered to be operational in 

every quantum system, which is shown in this work to be linked with non-pointness of 

particles like electron, nucleon, etc. The non-pointness discussed in this paper has two 

pieces. One is linked with the particles being part of a bound system and the other is 

linked with the method of measurement of the particle’s position. The measure of non-

pointness, when we consider a particle within a quantum system, is given approximately 

by the coupling strength of the interaction by which the particle is bound within the 

system. The other measure of non-pointness, when we consider the way of position 

measurement, is given approximately by the square root of interaction cross section, the 

interaction being like Compton scattering. We thus arrived at the formula (6) for minimal 

length whose numerical value is close to the upperbounds on minimal length found in 

literature. Therefore, we find a significant piece of physics in this work. Further 

investigation on this particular origin of minimal length in quantum systems may shed 

more light on the topic. 
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