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Abstract 
 

In this paper the nature and behavior of its coefficient of variation, skewness, kurtosis and 

index of dispersion of Poisson- weighted Lindley distribution (P-WLD), a Poisson mixture 

of weighted Lindley distribution, have been proposed and the nature and behavior have 

been explained graphically. Maximum likelihood estimation has been discussed to estimate 

its parameters. Applications of the proposed distribution have been discussed and its 

goodness of fit has been compared with Poisson distribution (PD), Poisson-Lindley 

distribution (PLD), negative binomial distribution (NBD) and generalized Poisson-Lindley 

distribution (GPLD). 
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1. Introduction 

 

M. Shankaran [1] proposed the Poisson-Lindley distribution (PLD) to model count data 

defined by its probability mass function (pmf) 
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Shanker and Hagos [2] proposed a simple method of finding moments of PLD and 

discussed the applications of PLD to model count data from biological sciences. Shanker  

and Shukla [3] proposed a generalized size-biased Lindley distribution which includes 

size-biased Poisson-Lindley distribution introduced by Ghitany et al. [4] as special case 

and discussed its statistical properties, estimation of parameters and applications for 

modeling the distribution of freely-forming small group. The distribution arises from the 

Poisson distribution when its parameter follows distribution [5] defined by its 

probability density function (pdf). 
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2 On Poisson-weighted Lindley Distribution and Its Applications 
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It can be easily verified that the pdf (1.2) is a two–component mixture of exponential 

() and gamma (2, ) distributions. Ghitany et al. [6] discussed statistical properties 

including moments based coefficients, hazard rate function, mean residual life function, 

mean deviations, stochastic ordering, Renyi entropy measure, order statistics, Bonferroni 

and Lorenz curves, stress-strength reliability, along with estimation of parameter and 

application to model waiting time data in a bank. Shanker et al. [7] have detailed study on 

modeling of various lifetime data from engineering and biomedical sciences using 

exponential and Lindley distribution and observed that there are many lifetime data where 

exponential distribution gives much better fit than Lindley distribution.  

The first four moments about origin and the variance of PLD (1.1) are given by  
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introduced a two-parameter weighted Lindley distribution (WLD) [8] having 

parameters  and  and defined by its pdf  
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is the complete gamma function. Its structural properties including moments, hazard rate 

function, mean residual life function, estimation of parameters and applications for 

modeling survival time data has been discussed by Ghitany et al. [8]. The corresponding 

cumulative distribution function (cdf) of WLD (1.3) is given by 
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is the upper incomplete gamma function.  It can be easily shown that at =1, WLD (1.3) 

reduces [5] to distribution (1.2). Shanker et al. [9] discussed various moments based 
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properties including coefficient of variation, coefficient of skewness, coefficient of 

kurtosis and index of dispersion of WLD and its applications to model lifetime data from 

biomedical sciences and engineering. Shanker et al. [10] have proposed a three-parameter 

weighted Lindley distribution (TPWLD) which includes one parameter exponential  and 

Lindley distributions, two parameter gamma and weighted Lindley distributions as 

particular cases and discussed its various structural properties, estimation of parameters 

and applications for modeling lifetime data from engineering and biomedical sciences. 

The main purpose of this paper is to discuss the nature and behavior of the coefficient of 

variation, skewness, kurtosis and index of dispersion of Poisson-Weighted Lindley 

distribution (P-WLD), a Poisson mixture of weighted Lindley distribution. Note that El-

Monsef et al. [11] have discussed some properties of P-WLD including moments based 

measures but they have unnecessarily introduced hyper geometric function in the 

expressions of raw moments which is illogical. In fact, the raw moments and central 

moments are straightforward for P-WLD. Further, Monsef et al. [11] has claimed that it 

gives better fit as compared with other distributions, which is not correct even in their 

paper. Maximum likelihood estimation has been discussed to estimate its parameters. 

Applications of the proposed distribution have been discussed and its goodness of fit has 

been compared with Poisson distribution (PD), Poisson-Lindley distribution (PLD), 

negative binomial distribution (NBD) and generalized Poisson-Lindley distribution 

(GPLD). 

 

2. Poisson-Weighted Lindley Distribution 

 

Assuming that the parameter  of the Poisson distribution follows the WLD (1.3), the 

Poisson mixture of WLD can be obtained as 
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                             (2.2)   

We would call this pmf the Poisson-Weighted Lindley distribution (P-WLD). It can 

be easily verified that PLD (1.1) is a particular case of P-WLD for = 1. It should be 

noted that Shanker et al. [12] have derived size-biased Poisson-weighted Lindley 

distribution and discussed its statistical properties, estimation of parameters using 
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maximum likelihood estimation and applications. It can be easily shown that P-WLD is 

unimodal and has increasing hazard rate. Since  
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is decreasing function inx, P2(x; , ) is log-concave. Now using the results of 

relationship between log-concavity, unimodality and increasing hazard rate (IHR) of 

discrete distributions available in literature [13], it can concluded that P-WLD has an 

increasing hazard rate and unimodal.  

The nature and behavior of P-WLD for varying values of the parameters and have 

been explained graphically in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Probability mass function plot of P-WLD for varying values of parameters  and . 
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3. Moments, Skewness, Kurtosis and Index of Dispersion 

 

Using (2.1), the r th factorial moment about origin of the P-WLD (2.2) can be obtained as 
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Taking x r y  , we get 
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Taking r = 1,2,3 and 4 in (3.1), the first four factorial moments about origin of P-WLD 

(2.2) can be obtained  
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Now using the relationship between factorial moments about origin and the moments 

about origin, the first four moments about origin of P-WLD (2.2) can be obtained as 
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The coefficient of variation (C. V), coefficient of Skewness (1), coefficient of Kurtosis 

(2) and index of dispersion () of the P-WLD (2.2) are thus obtained as  
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Nature and behavior of coefficient of variation, coefficient of skewness, coefficient of 

kurtosis and index of dispersion of P-WLD for varying values of parameters and   have 

been shown graphically in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Nature and behavior of coefficient of variation, coefficient of skewness, coefficient of 

kurtosis and index of dispersion of P-WLD for varying values of parameters  and . 

 

4. Maximum Likelihood Estimation  

 

Let (x1, x2, …….xn) be a random sample of size nfrom the P-WLD (2.2) and let x be the 

observed frequency in the sample corresponding to X = x (x = 1,2,3,…k)  such that 

1

k
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x
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 , where k is the largest observed value having non-zero frequency. The log  

likelihood function of P-WLD (2.2) can be given by 
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The maximum likelihood estimates ( ̂,  ̂   of ( ) of P-WLD (2.2) is the solutions of the 

following log likelihood equations  
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  

where x   is the sample mean and    log
d

x x
d

  


    and    log
d

d
  


   are 

digamma functions. 

 These two log likelihood equations do not seem to be solved directly. However, the 

Fisher’s scoring method can be applied to solve these equations. We have 
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   

2 2

2 2
1 1

log log
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x x
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 
    

       
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Where    
d

x x
d

   


     and    1 1
d

d
   


     are trigamma functions. 

 The maximum likelihood estimates ( ̂,  ̂) of ( ) of P-WLD (2.2) is the solution of 

 the following equations  

0
0

0
0

2 2

2

0

2 2

0

ˆ2
ˆ

ˆ
ˆ

log log log
ˆ

logˆlog log

L L L

LL L
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 
 

 

     

 

   





    
             
      
       

 

Where o and o are the initial values of  and   respectively. These equations are 

solved iteratively till sufficiently close values of   ̂     ̂ are obtained.  
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5. Applications 

 

It would be worth to mention that there are several mistakes regarding applications in the 

paper [11], namely (i) the major problem of their paper is that although they claim that P-

WLD fits well but the fit of P-WLD is not better than one parameter PLD and Two-

parameter GPLD,  (ii) the ML estimates of the parameter of Hermite distribution is not 

given, (iii) the pmf of GPLD have parameters and  but in the goodness of fit they 

mentioned c and , (iv) the application and the conclusion of the paper are not correct. In 

fact the paper [11] is full of mistakes and typing errors.  

In this section the applications of the P-WLD has been discussed with some count 

datasets from biological sciences and thunderstorms events. The dataset in Table 1 is the 

data regarding the number of European red motes on apple leaves, available in reference 

[14]. The dataset in Tables 2 and 3 are the Mammalian Cytogenetic dosimetry Lesions in 

Rabbit Lymphoblast induced by streponigrin (NSC-45383), available in reference [15]. 

The dataset in Table 4 is the number of micronuclei after exposure at dose 4 Gy 

ofirradiation, counted using the cytochalasin B method and available in reference [16]. 

The dataset in Tables 5 and 6 are the frequencies of the observed number of days that 

experienced X thunderstorm events at Cape kennedy, Florida for the 11-year period of 

record in the month of June and July, January 1957 to December 1967 and are available 

in references [17,18]. The goodness of fit of P-WLD has been compared with the 

goodness of fit given by Poisson distribution (PD), PLD, negative binomial distribution 

(NBD) and GPLD. Note that the estimates of the parameters are based on maximum 

likelihood estimates for all the considered distributions. Based on the values of chi-square 

(
2
), -2logL and AIC (Akaike Information criterion), it is obvious that P-WLD is 

competing well with the considered distributions. Note that AIC has been calculated 

using the formula AIC = -2logL+2k, where k, is the number of parameters involved in the 

distribution.  

In Table 1, P-WLD gives better fit than PD, PLD, NBD and GPLD. In Table 2, P-

WLD gives better fit than PD, PLD, NBD and GPLD. In Table 3, PLD Gives better fit 

than PD, NBD, GPLD and P-WLD. In Table 4, NBD and GPLD are almost gives the 

same fit but better than PD, PLD and P-WLD. In Table 5, PLD, GPLD, and P-WLD are 

almost the same but better than PD and NBD. In Table 6, PLD gives better fit than PD, 

NBD, GPLD and P-WLD. Therefore, it can be concluded that P-WLD is competing well 

with PD, PLD, NBD, and GPLD, and thus it can be considered an important distribution.  
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Table 1. Observed and Expected number of European red mites on Apple leaves, available in 

reference [15]. 
 

Number of  

European red 

mites per leaf 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

6 

7 

8 

70 

38 

17 

10 

9 

3 

2 

1 

0 

47.6 

54.6 

31.3 

11.9 

3.4 

0.8 

0.2 

0.1 

0.1 

67.2 

38.9 

21.2 

11.1 

5.7 

2.8 

1.4 

0.9 

0.8 

69.5 

37.6 

20.1 

10.7 

5.7 

3.0 

1.6 

0.9 

0.9 

69.8 

36.7 

20.1 

10.9 

5.8 

3.1 

1.6 

0.8 

1.2 

69.8 

36.8 

20.1 

10.9 

5.8 

3.0 

1.6 

0.8 

1.2 

Total 150 150.0 150.0 150.0 150.0 150.0 

ML 

estimate 

 ̂=1.14666 

 

  ̂=1.26010 

 

 ̂=1.02459 

 ̂=0.52811 

 ̂=1.09620 

 ̂=0.78005 

 ̂=1.09141 

 ̂=0.82194 

Standard ̂ 

 Errors ̂ 

 0.08743 0.11390 0.42097 

0.40136 

0.25400 

0.31550 

0.26231 

0.25230 

( 2)  26.50 2.49 2.91 2.43 2.41 

d.f  2 4 3 3 3 

p-value  0.0000 0.5595 0.4057 0.4880 0.4917 

-2logL  485.61 445.02 469.68 444.62 425.35 

AIC  487.61 447.02 447.02 448.62 429.35 

 
 

Table 2. Mammalian Cytogenetic dosimetry Lesions in Rabbit Lymphoblast induced by 

streponigrin (NSC-45383), exposure- 60 g/kg. 
 

Class/Exposure 

(g/kg) 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

6 

413 

124 

42 

15 

5 

0 

2 

374.0 

177.4 

42.1 

6.6 

0.8 

0.1 

0.0 

405.7 

133.6 

42.6 

13.3 

4.1 

1.2 

0.5 

412.7 

124.9 

41.5 

14.2 

4.9 

1.7 

1.1 

412.9 

124.1 

42.0 

14.3 

4.97 

1.6 

1.2 

412.9 

124.3 

41.9 

14.4 

4.9 

1.7 

0.9 

Total 601 601.0 601.0 601.0 601.0 601.0 

ML  

estimate 

  ̂=0.47421  ̂=2.68537  ̂=1.76494 

 ̂=0.83700 

 ̂=2.16876 

 ̂=0.71287 

 ̂=2.12567 

 ̂=0.74791 

Standard  ̂ 

 Errors  ̂ 

 0.02809 0.16467 0.40075 

0.17964 

0.38481 

0.20487 

0.41314 

0.17437 

( 2)  48.169 1.336 0.12 0.098 0.059 

d.f  2 3 2 2 2 

p-value  0.0000 0.7206 0.94129 0.9520 0.9709 

-2logL  1165.35 1113.76 1112.39 1112.36 1271.94 

AIC  1167.35 1115.76 1116.39 1116.36 1275.94 



R. Shanker et al. J. Sci. Res. 11 (1), 1-13 (2019) 11 

 

Table 3. Mammalian Cytogenetic dosimetry Lesions in Rabbit Lymphoblast induced by 

streponigrin (NSC-45383), exposure- 90 g/kg. 
 

Class/Exposure 

(g/kg) 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

6 

155 

83 

33 

14 

11 

3 

1 

127.8 

109.0 

46.5 

13.2 

2.8 

0.5 

0.2 

158.3 

77.2 

35.9 

16.1 

7.1 

3.1 

2.3 

155.1 

80.6 

36.7 

15.9 

6.7 

2.8 

2.2 

155.3 

80.1 

36.9 

16.0 

6.7 

2.8 

2.2 

155.9 

80.0 

36.7 

15.9 

6.7 

2.7 

2.1 

Total 300 300.0 300.0 300.0 300.0 300.0 

ML  

estimate 

  ̂=0.85333 

 

 ̂=1.61761 

 

 ̂=1.56009 

 ̂=1.33128 

 ̂=1.80860 

 ̂=1.18743 

 ̂=1.82011 

 ̂=1.16320 

Standard  ̂ 

 Errors   ̂ 

 0.05333 0.11327 0.41479 

0.33752 

0.40045 

0.37007 

0.41992 

0.32483 

( 2)  24.969 1.51 1.60 1.69 1.78 

d.f  2 3 2 2 2 

p-value  0.0000 0.6799 0.4488 0.42955 0.4106 

-2logL  800.92 766.10 765.86 765.79 834.51 

AIC  802.92 768.10 769.86 769.79 838.51 

 
Table 4. Number of micronuclei after exposure at dose 4 Gy of  irradiation, counted using the 

cytochalasin B method and available in reference [16]. 
 

Number of 

micronuclei 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

6 

7 

1974 

1674 

869 

342 

102 

26 

13 

2 

1816.0 

1839.9 

932.1 

314.8 

79.7 

16.1 

2.7 

1.6 

2396.8 

1300.3 

668.8 

332.1 

160.9 

76.5 

35.8 

30.8 

1966.2 

1695.5 

331.5 

857.5 

108.4 

31.6 

8.4 

2.9 

1964.9 

1696.6 

857.9 

331.5 

108.3 

31.5 

8.41 

2.9 

1966.0 

1695.5 

857.6 

331.7 

108.5 

31.5 

8.4 

2.8 

Total 5002 5002.0 5002.0 5002.0 5002.0 5002.0 

ML 

estimate 

  ̂=1.01319 

 

 ̂=1.38736 5.71671 

5.79197 

 ̂=5.88560 

 ̂=5.81844 

 ̂=5.97458 

 ̂=5.57089 

Standard  ̂ 

 Errors    ̂ 

 0.01423 0.02251 0.82644 

0.83264 

0.82310 

0.84660 

0.83470 

0.83790 

( 2)  62.21 337.08 3.37 3.36 3.41 

d.f  4 5 4 4 4 

p-value  0.0000 0.0000 0.4976 0.4995 0.4909 

-2logL  13535.82 13836.70 13471.80 13471.81 15597.78 

AIC  13537.82 13838.70 13475.80 13475.81 15601.78 
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Table 5. Frequencies of the observed number of days that experienced X thunderstorm events at 

Cape kennedy, Florida for the 11-year period of record in the month of June, January 1957 to 

December 1967.  
 

X 
Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

6 

187 

77 

40 

17 

6 

2 

1 

155.6 

116.9 

43.9 

11.0 

2.0 

0.3 

0.3 

185.3 

83.4 

35.9 

15.0 

6.1 

2.5 

1.8 

184.6 

84.5 

35.8 

14.8 

6.0 

2.4 

1.9 

185.3 

83.5 

35.9 

15.0 

6.1 

2.5 

1.7 

185.1 

83.7 

36.0 

15.0 

6.1 

2.4 

1.7 

Total 330 330.0 330.0 330.0 330.0 330.0 

ML  

estimate 

  ̂=0.75148 

 

 ̂=1.80427  ̂=1.55916 

 ̂=1.17172 

 ̂=1.80780 

 ̂=1.00340 

 ̂=1.82188 

 ̂=1.01237 

Standard ̂ 

 Errors   ̂ 

 0.04772 0.12573 0.41501 

0.29696 

0.39558 

0.32657 

0.41748 

0.28219 

( 2)  31.6 1.43 1.68 1.42 1.41 

d.f  2 3 2 2 2 

p-value  0.0000 0.6985 0.4317 0.4916 0.4941 

-2logL  824.50 788.88 789.18 788.88 874.20 

AIC  826.50 790.88 793.18 792.88 878.20 

 
Table 6. Frequencies of the observed number of days that experienced X thunderstorm events at 

Cape kennedy, Florida for the 11-year period of record in the month of July, January 1957 to 

December 1967.  
 

X 
Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD P-WLD 

0 

1 

2 

3 

4 

5 

177 

80 

47 

26 

9 

2 

142.3 

124.3 

54.3 

15.8 

3.5 

0.8 

177.7 

87.9 

41.5 

18.9 

8.4 

6.6 

171.8 

94.0 

43.3 

18.7 

7.8 

5.4 

172.7 

92.8 

43.2 

18.8 

8.0 

5.4 

172.5 

92.9 

43.3 

18.9 

7.9 

5.5 

Total 341 341.0 341.0 341.0 341.0 341.0 

ML  

estimate 

  ̂=0.87390  ̂=1.58353  ̂=1.67672 

 ̂=1.46527 

 ̂=1.86350 

 ̂=1.28028 

 ̂=1.89198 

 ̂=1.25544 

Standard  ̂ 

 Errors  ̂ 

 0.05062 0.10317 0.45068 

0.37896 

0.42561 

0.40429 

0.44313 

0.35588 

( 2)  39.40 5.16 5.77 5.39 5.32 

d.f  2 3 2 2 2 

p-value  0.0000 0.1594 0.0558 0.0674 0.0699 

-2logL  911.00 880.50 880.35 879.93 967.56 

AIC  913.00 882.50 884.35 883.93 971.56 
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6. Conclusion 

 

In this paper a Poisson-weighted Lindley distribution (P-WLD), a Poisson mixture of 

weighted Lindley distribution has been proposed and its nature and behavior have been 

discussed graphically. The nature and behavior of its coefficient of variation, skewness, 

kurtosis and index of dispersion have been explained graphically. Maximum likelihood 

estimation has been discussed to estimate its parameters. Applications of the proposed 

distribution have been discussed and its goodness of fit has been compared with Poisson 

distribution (PD), Poisson-Lindley distribution (PLD), negative binomial distribution 

(NBD) and generalized Poisson-Lindley distribution (GPLD) and it has been observed 

that P-WLD is competing well with the considered distributions.  
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