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Abstract 
 

We find the shift of ground state energy of deuteron caused by generalized uncertainty 

principle (GUP) using Yukawa potential as the binding force between the proton and 

neutron. This leads to an upperbound on minimal length of about 10 -18 m which is close to 

the values frequently found in literature. 
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1.   Introduction 

 

A minimal observable length manifest theoretically through a non-zero minimal 

uncertainty (∆x)min in position measurements [1-3] is nowadays a very interesting and 

important element of physics research. Many versions of quantum gravity [4], string 

theory [5] and non-commutative geometry [6] predict such a minimal observable length. 

Quantum mechanics gets considerable modification due to the incorporation of minimal 

length via generalized uncertainty principle (GUP), which is   2
1

2
ppx  

 , where 

  is a small parameter, assumed to be positive [7]. This modified uncertainty relation 

gives rise to    minx  in one dimension, which is theorized to be around the Planck 

length, but can be much different since it is yet an unobserved. The most significant 

upperbound on  minx  is 1710 m which is found by comparing experimental uncertainty 

of electron energy in hydrogen atom with the theoretical shift of energy of the same 

caused by GUP [8,9]. Although, it is the Planck length )10( 35m   where GUP is thought 

and theorized to be most operational, GUP can have observable consequences at length 

scales much larger than the Planck scale which is evident from the modified uncertainty 
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relation (since it contains a UV/IR mixing) and the upperbound just quoted. We have 

previously presented an upperbound on minimal length from shift caused by GUP to 

deuteron quadrupole moment which is about 10
-16

 m [10]. In the present paper, we 

estimate the correction to the ground state energy of deuteron due to GUP and use that to 

estimate an upperbound on minimal length. 

 

2. The Influence of the Generalized Uncertainty Principle on the Ground State 

Energy of Deuteron and the Estimation of Minimal Length 

 

The ground state of deuteron is an admixture of 
1

3S  and 
1

3D  states. Since the exact form of 

the neutron-proton interaction potential by which deuteron is bound is not fully known, 

one usually cannot predict the binding energy of deuteron. The simplest approach, 

however, to find the wave function of deuteron is to use a square-well potential. Here, 

there are two free parameters: the depth and the range of the potential. One can at best 

find, using the known data, the range-depth relationship. The situation somewhat 

improves if one uses the Yukawa potential given by  

 
r

e
ArV

r

                                                   (1)  

where the parameter A is dependent on both the depth and range of the interaction, and   

is solely dependent on the range. The Schroedinger equation to be solved is of the form 
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which modifies, when generalized uncertainty principle is taken into account, to [8]  
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                                                   (3)  

where   is the reduced mass of deuteron and other symbols represent usual dynamical 

quantities. 

We are interested to know how the energy eigenvalue E in Eq.(3) differs from the E in 

Eq.(2), due to the term 4p




  which is the contribution of GUP to the Hamiltonian. To 

accomplish our task, we shall use an approximation of the potential (1) with only the most 

dominant terms in its expansion, i.e.  

  A
r

A
rV                                       (4)  

and we shall use the experimentally known value of the binding energy of deuteron which 

is MeV000009.0224.2   [11]. Moreover, we shall use a precise value of 

  115

1

1043.1












 m

cm


 , 

m is the mass of pion and 
cm

  is the Compton wavelength 

of pion and it is the most plausible range of nuclear interaction operational in deuteron in 

the leading order. By such a procedure, we reduce the set of free parameters in our model 

to only one, namely, A. We can solve Eq. (2) first with the potential given by the first term 

in Eq. (4); the problem then is like solving the hydrogen atom problem in non-relativistic 

quantum mechanics. Thereafter, we can find the contribution of the second term of Eq. (4) 

using simple perturbation technique. We, then, pose an algebraic equation to find the 
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value of A in the present model. Subsequently, we can find the contribution of the term 

4p




 of Eq. (3) and find the correction to the energy of deuteron due to GUP posed by 

Eq.(3). Throughout the perturbation calculation we can use hydrogen atom like 

wavefunctions as the unperturbed wavefunctions. The procedure outlined here is justified 

as long as we aim to find an order of magnitude shift of the binding energy of deuteron 

due to GUP. 

    Now, using the potential 
r

A
  in Eq.(2), and measuring distance in units of 

A

2  and E in 

units of 
2

2

2

A , we have the transformed Eq.(2) as follows: 

 0
22 







 

r
E ,                                        (5)  

whose solution is well known in quantum mechanics (see, for example, [12]), and the 

energy eigenvalue is given by  

22

2

2

1
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n
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n
En




                                                                     (6)  

    Moreover, the radius of the ground state orbit is given by 
A

a


2

0


 . We do not write the 

wavefunctions for they are well known and can be found in textbooks (for example, see 

[12]). The contribution of the term A  to energy is A . Hence, we can pose the 

following algebraic equation to find a particular value of A:  

02

2

2
EA

A
 




                                                                                     (7)  

  Using the binding energy MeVE 224.20  , 
 

 
               and known value of  , 

we find from Eq. (7), 

 JmA 261089.1                                                                             (8)  

where positivity of A was assumed in evaluation from Eq. (7). This value of A 

corresponds to depth of the potential of about 82.5 MeV, which is very plausible and close 

to the values frequently found in literature. Now we can proceed to find the contribution 

of the term 4p




  of Eq. (3) to the energy and equate that to the experimental uncertainty 

in 
0E  which is, as quoted above, MeV000009.0 . A straight forward calculation gives  





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 50
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Ep                             (9)  

    The three dimensional expression for   5min x . Using this in Eq. (9) and the 

experimental 
0E  quoted just, we get an upperbound on minimal length, if we attribute 

the whole uncertainty in binding energy of deuteron to GUP, as  

  mx 18

min 106.1                                                                     (10)  

This upperbound on minimal length is within the span of values that are frequently 

found from other systems like hydrogen atom (   mx 17

min 10~   [8]), deuteron qudrupole 

moment (   mx 16

min 10~   [10]). Hence, the result we present in this work is of 
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considerable theoretical interest and importance. Our derivation, though naive, gives an 

order of magnitude size of the minimal length that can be considered operational in 

nuclear systems. After all, minimal length can be considered to be of the same size as the 

Compton wavelength of the particles under consideration; above that it may also depend 

on the interaction strength. This is a matter which is under investigation and will be dealt 

with somewhere else, but for now, the estimation we did here is close to the Compton 

wavelength of deuteron ( m1610~  ) times the square of nuclear interaction strength (∼ 

0.1) . Therefore, we hope we will be able to construct a theoretical framework which will 

cast more light on minimal length applicable for atomic and nuclear systems at energy 

scale much below the Planck scale.  

 

3. Conclusion  

 

Quantum gravity, string theory etc conclusively indicate towards a minimal length which 

is a length below which no resolution of space is possible. This minimal length modifies 

ordinary Heisenberg uncertainty principle and gives rise to the generalized uncertainty 

principle (GUP). The framework of GUP is by now well established and many studies of 

the influence of this principle on ordinary quantum mechanics (see, e.g., [13-17]) and 

relativistic quantum mechanics (see, e.g., [18-22]) are now available in literature. GUP 

influences not only Planck scale physics, which is the main domain of the minimal length, 

but also much larger length scale. And this is due to the UV-IR mixing which is inherent 

in the GUP. Due to this matter of fact, the minimal length, usually in operation at Planck 

scale, may show up as a length determined by the nature of the quantum systems one 

deals with. Thus the upperbound on minimal length appears as m1710~   from studies of 

hydrogen atom. In this present work, we modify the quantum mechanics of the deuteron 

problem using generalized uncertainty principle and work out the extra contribution to 

binding energy of deuteron from the generalized uncertainty principle. Comparing that 

with the experimental uncertainty of the binding energy of deuteron, we find out an 

upperbound on minimal length inferable from the binding energy of deuteron. The 

upperbound we found is close to the value found using the hydrogen atom binging energy. 

Hence, we think our work is very illuminating to the field of minimal length-quantum 

mechanics.   
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