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Abstract 

 

The mixed convection in square lid-driven with internal elliptic body and constant flux 

heat source on the bottom wall is numerically simulated in this paper following a finite 

element method approach. The left moving wall and right moving wall are cold. The 

upper wall is insulated and so is the lower wall with heat flux located in the middle. The 

magnetic field of strength B is applied parallel to x- axis. Result is presented for 

different Richardson numbers (0.01 ≤ Ri ≤ 10) when Grashof numbers are (10 ≤ Gr ≤ 

50) and Prandtl number is taken as Pr = 0.733 for all computations. The influence of the 

Richardson number on heat source surface is being investigated in this paper. Results 

are presented in the form of streamline and isotherm plots as well as the variation of the 

maximum temperature and Nusselt number at the heat source surface under different 

conditions. A detailed analysis of flow pattern shows that the mixed convection is based 

on the parameters Richardson number (Ri), Grashof number (Gr) and Reynolds number 

(Re). 
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1. Introduction 

 

Combined forced and free convection flows, or mixed convection flows, arise in many 

transport processes in engineering devices in nature. Examples of mixed convection 
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processes can be found in connection with heat exchangers, hot-wise anemometers, 

nuclear reactors, electronic devices, atmospheric boundary-layer flows, solar 

collectors, energy storage and heat rejection systems, etc. [1]. Al-Amiri et al. [2] 

investigated numerically steady mixed convection in a square lid-driven cavity under 

the combined buoyancy effects of thermal and mass diffusion. Sharif [3] studied 

numerically laminar mixed convective heat transfer in two-dimensional shallow 

rectangular driven cavities of aspect ratio 10. The top moving lid of the cavity is at a 

higher temperature than the bottom wall. The effects of inclination of the cavity on the 

flow and thermal fields are investigated. The stream line and isotherm plots and the 

variation of the local and average Nusselt numbers at the hot and cold walls are 

presented. Khanafer et al. [4] investigated numerically unsteady laminar mixed 

convection heat transfer in a lid driven cavity. In addition, the two vertical walls of the 

enclosure are kept insulated. Fluid flow and heat transfer characteristics are examined 

in the domain of the Reynolds number, Grashof number and the dimensionless lid 

oscillation frequency. Rahman et al. [5] investigated numerically the conjugate effect 

of joule heating and magnetic force, acting normal to the left vertical wall of an 

obstructed lid-driven cavity saturated with an electrically conducting fluid. Saha et al. 

[6] have performed the numerical simulation of the mixed convection flow and heat 

transfer in a lid-driven cavity with wavy bottom surface. They observed that the heat 

transfer mechanisms and flow characteristics inside the cavity noticeably depend on 

the number of undulations, Grashof number and Reynolds number. Rahman et al. [7] 

analyzed mixed convection in a rectangular cavity with a heat conducting horizontal 

circular cylinder by using finite element method. Saha et al. [8] have performed the 

numerical effect of internal heat generation or absorption on magnetohydrodynamic 

(MHD) mixed convection flow in a lid driven cavity. They significant reduction in the 

average Nusselt number was produced as the strength of the applied magnetic field 

increased. In addition, heat generation predicated to decrease the average Nusselt 

number whereas heat absorption increases it. Saha et al. [9] numerically investigated 

the hydro-magnetic mixed convection flow in a lid driven cavity with wavy bottom 

surface. They observed that the wavy lid-driven cavity can be considered as an 

effective heat transfer mechanism in presence of magnetic field at large wavy surface 

amplitude and low Richardson numbers. Guanghong et al. [10] have investigated the 

mixed convection in rectangular cavities at various aspect ratios with moving 

isothermal sidewalls and constant flux heat source on the bottom wall. Hussein [11] 

investigated the mixed convection in square lid-driven with Eccentric Circular Body. 

Munshi et al. [12] analyzed a numerical study of mixed convection in square lid-

driven with internal elliptic body and constant flux heat source on the bottom wall. 

Nasrin [13] carried out a aspect ratio effect of vertical lid-driven chamber having a 

centered conducting solid on mixed magneto convection. Hussain et al. [14] studied 

the problem of mixed convection heat transfer in a differentially heated square 

enclosure with a conductive rotating circular cylinder at different vertical locations. 

Sivasankaran et al. [15] considered the numerical study on mixed convection in an 
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inclined lid-driven cavity with discrete heating. Sivasankaran et al. [16] investigated 

mixed convection in a lid-driven two-dimensional square cavity with corner heating 

and internal heat generation. Hussein [17] paper gives a comprehensive over view and 

understanding related with mixed convection in cylinders. Hussein et al. [18] 

measured the characteristics of MHD mixed convection in a parallel motion two-sided 

lid-driven differentially heated parallelogrammic cavity with various skew angles. 

Saha et al. [19] rigorously investigated mixed convection in a tilted lid-driven square 

enclosure with adiabatic cylinder at the center. Hussein et al. [20] studied numerically 

the problem of mixed convection through a lid-driven air-filled square cavity with a 

hot wavy wall. Reddy [21] studied the set of non-linear algebraic equation transferred 

into linear algebraic equations. Zeinkiewicz et al. [22] solved linear equations by 

applying Triangular Factorization method and reduce integration technique.   

   The main objective of this work is to present the effect of mixed convection in 

square lid-driven with internal elliptic body and constant flux heat source on the 

bottom wall. The detailed analysis of heat transfer rates has been carried out using 

finite element method. The Richardson number has been varied from 0.01 to 10 by 

emphasizing dominating forced convection to free convection. Results are presented 

graphically in terms of streamlines, isotherms, Nusselt number, temperature and 

velocity profiles.  

 

2. Physical Configurations 

 

The physical model considered of a numerical study of mixed convection in square lid-

driven with internal elliptic body and constant flux heat source on the bottom wall are 

shown in Fig. 1. The height and the width of the cavity are denoted by L was 

considered. The left and right wall is kept at cold Tc and moving downward. The top 

wall and internal elliptic block is adiabatic. The bottom wall is adiabatic with heat flux 

located in the middle.  

 

 

T 
= 

Tc
 

Constant Heat flux q  

T 
= 

Tc
 

Adiabatic 

adiabatic 

Y

 
 

Fig. 1. Schematic view of the cavity with boundary conditions considered in the present paper.  
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3. Mathematical Formulations 

 

The physical domain is shown in Fig. 1. The hydromagnetic mixed convection flow of 

enclosed fluid inside the enclosure is assumed to be two-dimensional, steady, laminar, 

and incompressible. The fluid properties are assumed to be constant except for the 

density which is considered to vary linearly with temperature according to the 

Boussinesq approximation. The working fluid is considered to be air (Pr = 0.733). The 

governing equations for steady mixed convection flow using conservation of mass, 

momentum and energy can be written as          

 

                                                                                                                 (1) 

                                                                      (2) 

                                           (3) 

                           (4)   

The boundary conditions for the present problem are specified as follows: 
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                        and   u = v  = 0 

 

where x and y are the distances measured along the horizontal and vertical directions 

respectively, u and v are the velocity components in x and y direction respectively, T 
denotes the temperature, υ denotes the kinematics viscosity, α denotes the thermal 

diffusivity respectively, p is the pressure, ρ is the density and q is the uniform constant 

heat flux respectively.   

The equations are non-dimensionalzed by using the following dimensionless quantities  
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where  is the reference kinematic viscosity and θ is the non-dimensional 

temperature. After substitution of dimensionless variable we get the non- dimensional 

governing equations: 
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where U and V are the velocity components in the X and Y directions, respectively, P is 

the pressure, and θ is the non-dimensional temperature. Here, all distance are 

normalized by W, all velocities are normalized by Uo. When Ri ~1 both free and 

forced convection are equally dominant and the flow regime is designated as mixed 

convection. If Ri  > 1 then free convection is dominant whereas forced convection is 

dominant when Ri <  1. The boundary conditions for the present problem are specified 

as follows:  
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Right and left wall: θ = 0, U = 0, V = -1 

We define the local heat transfer coefficient 
][ cs

n

x
TT

q
h


   at a given point on the heat 

source surface where Ts(x) is the local temperature on the surface. Accordingly the 

local Nusselt number and the average or over all Nusselt number can be obtained 

respectively as  

 and 

  
where  Xs  is the local dimensionless temperature. The Prandtl number , the 

Reynolds number  and the Grashof number  where γ 

is the kinematic viscosity of the fluid, α is the thermal diffusivity of the fluid, β is the 

thermal expansion coefficient of the fluid, and g is the gravitational acceleration. The 

ratio   is called the Richardson number, Ri which represents the relative magnitude 

of the free convection to the forced convection and plays an important role in 

designating the convection flow. 
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4. Numerical Techniques 

 

The nonlinear governing partial differential equations, i.e., mass, momentum and 

energy equations are transferred into a system of integral equations by using the 

Galerkin weighted residual finite-element method. The integration involved in each 

term of these equations is performed with the aid of Gauss quadrature method. The 

nonlinear algebraic equations so obtained are modified by imposition of boundary 

conditions. These modified nonlinear equations are transferred into linear algebraic 

equations with the aid of Newton’s method. Lastly, Triangular factorization method is 

applied for solving those linear equations. 

 

4.1. Finite element formulation and computational procedure 

 

The momentum and energy balance equations are the combinations of a mixed elliptic-

parabolic system of nonlinear partial differential equations. The system of nonlinear 

partial differential equations (7)-(9) along with boundary conditions are discretized 

and solve with the aid of the Galerkin weighted residual finite element method. 

To derive the finite element equations, the method of weighted residuals in 

Zienkiewicz [22] is applied to Eqs. (7)-(9) as 
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Where A is the element area,  6,,2,1 N are the element interpolation functions 

for the velocity components and the temperature, and  3,2,1H  are the element 

interpolation functions for the pressure.  

Gauss’s theorem is then applied to Eqs. (10)-(12) to generate the boundary in 

general terms associated with the surface tractions and heat flux. Then Eqs. (10)-(12) 

become 
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where Sx, Sy are surface tractions along the outflow boundary S0 and q1w, q2w are heat 

flux into or out from the domain along the wall boundary Sw of the element. The basic 

unknowns for the above differential equations are the velocity components U and V, 

the temperature θ, and the pressure P. The five node triangular mesh element is used in 

this work for the development of the finite element equations. All five nodes are 

associated with velocities as well as temperature; only the corner nodes are associated 

with pressure. This means that a lower order polynomial is chosen for pressure, which 

is satisfied through the continuity equation. Expanding the velocity components (U, V) 

and temperature (θ) using the element interpolation function  6,,2,1 N and 

 3,2,1H as  

  

Where β = 1, 2, …, 6 and 3,2,1  
By substituting the element velocity components, temperature and pressure 

distributions in Eqs. (13)- (15), the modified finite element equations are 

                     (16) 

                         (17) 

                           (18) 

 

Where the coefficients in element matrices of the integrals over the element area and 

along the element edges S0 and Sw are as 
 

  
A A

xy

A

x dANNNKdANNKdANNK xyx ,,, ,, 

 

,,, ,,,   
A A

xx

A

y dANNSdANNKdANNNK xxy 

 

,,, ,,,,   
A A

yx

A

yy dAHHMdAHHMdANNS yxyy 

 

  

00

100 ,
S S

wwy

S

x

w

u dSqNMdSSNQdSSNQ  

 

Using Newton-Raphson method of Reddy [21], the set of non-linear algebraic Eqs. 

(16)- (18) are transferred into linear algebraic equations. Finally, these linear equations 

are solved by applying Triangular Factorization method and reduced integration 

technique of Zeinkiewicz et al. [22]. 

 

4.2. Grid refinement check 

 

We examined five different non-uniform grid systems with the following number of 

elements within the resolution field. It is observed that grid independence is achieved 

with 25482 elements where there is insignificant change in Nu with further increase of 

mesh elements.  Five different non-uniform grids with the following number of nodes 

(18) 
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and elements were considered for the grid refinement tests. From these values, 12991 

nodes 25482 elements can be chosen throughout the simulation to optimize the relation 

between the accuracy required. 

     
Table 1. Grid refinement check at Pr = 0.733, Re = 10, Gr = 10 and Ri = 0.01, 0.5, 1, 5, 10. 

 

 
Fig. 2.  Grid independency study for different size of elliptic shape when Ri = 0.01, 0.5, 1,5, 10, 

Re = 10, Gr = 10 and Pr = 0.733 

 

4.3. Mesh generation 

 

In finite element method, the mesh generation is the technique to subdivide a domain 

into a set of sub-domains, called finite elements, control volume etc. The discrete 

locations are defined by the numerical grid, at which the variables are to be calculated. 

The computational domains with irregular geometries by a collection of finite elements 

make the method a valuable practical tool for the solution of boundary value problems 

arising the various fields of engineering. Fig. 3 displays the finite element mesh of the 

present physical domain. 

 

 
 
Fig. 3. Mess generation of mixed convection in square lid-driven cavity. 

Nodes 451 616 1146 3403 12991 

Elements 814 1127 2145 6554 25482 

Nu 49.98399 49.99788 50.01357 50.07905 50.08104 

θαυ 0.82835 0.81251 0.810452 0.80167 0.80167 
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5. Program Validations and Comparison with Previous Work 

 

The computer code and Guanghong et al. [12] was modified and used for the 

computations in the study. The working fluid is chosen Prandtl number Pr = 0.733. 

The left and right wall is kept at cold Tc and moving downward. Both upper and lower 

are being insulated. By performing simulation for mixed convection in the lower wall 

is adiabatic. Streamlines and isotherms are plotted in Fig. 4 showing good agreement. 
 

        
(a) (b) 

 
Fig. 4. (a) Present (b) Guanghong et al. obtained streamlines and Isotherms for Re = 10, Gr = 10 

Pr = 0.733 and Ri = 0.01. 

 

6. Results and Discussion 

 

In this section, numerical computations are carried out and a parametric study is 

performed to illustrate the influence of the physical parameters on the resulting 

streamlines and isotherms as well as the velocity components at the enclose mid-

section, Nusselt number, velocity and temperature along the heat sources.  
 

 

 

 

 

 

 

 

 
 

 

Fig. 5. Stream lines and isotherms for Ri = 0.01, 0.5, 1,5, 10, Re = 10, Gr = 10 and Pr = 0.733. 

 

 

Fig. 5 illustrates the streamlines and isotherms for different values of Ri. Fig. 5 upper 

portion shows that the strength of primary and secondary circulations is seen to be 

very week as the minimum value of circulation is found to be Ri = 0.01. When the 

Richardson number increases the strength of both primary and secondary circulations 

increases. The circulation cells are found to be almost symmetric where significant 

flow is primarily dominated by buoyancy force. The isotherms are found to be smooth 
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symmetric curves that span the entire cavity signifying the conduction dominant mode 

of heat transfer are shown in Fig. 5 lower portion. Fig. 6 shows that the local Nusselt 

number, vertical velocity, dimensional temperature and temperature gradient. Fig. 6(a), 

the lower Richardson number, the local Nusselt number has more significant and 

higher Richardson number the local Nusselt number less significant. Fig. 6(b) variation 

of the velocity components along the left wall for different Ri. It can be seen from the 

figure that the absolute value of maximum and minimum value of the velocity 

increases with increasing Ri. Fig. 6(c) dimensional temperature line starts at maximum 

point of left wall and reaches the lower portion to the right wall. Again Fig. 6(d) the 

variation of temperature starts at maximum points left wall and reaches to the lower 

wall and moves the upper to the right wall.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 6. Local Nussle number, velocity, temperature and temperature gradient for Ri = 0.01, 0.5, 

1, 5, 10, Re = 10, Gr = 10 and Pr = 0.733. 

 

Fig. 7 shows the streamlines and isotherms for mixed convection regime. There 

are four recirculation eddies which appear when there is no magnetic field presence for 

Ri = 0.01. Increasing the Ri causes the major recirculation eddy at the top wall 

gradually to become larger and occupy the cavity. From Fig. 7, the variations of 

Richardson numbers made big impact on the isotherms. At higher Ri, the isotherms are 

almost lower walls and satisfied at the upper of the cavity. This indicates that 

convective flow is weaker and less heat transfer occurs.    

a b 

c d 
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Fig. 8 shows the local Nusselt number, velocity, dimensional temperature and 

temperature for different Richardson numbers. Fig. 8(a) presents that the local Nusselt 

number curves started from maximum and minimum points of left wall and fall in the 

lower part right wall. Fig. 8(b) shows the velocity profile along the horizontal direction 

at the mid axis in x-direction at different Richardson numbers. Fig. 8(c) shows the 

dimensionless temperature curve started from upper portion left wall and fall in the 

lower part right wall. Fig. 8(d) present the temperature started in the upper part the nit 

is shaply decreased and meet lower wall, next it commenced to increase and finally 

reached the upper on the right wall. Fig. 9 shows the streamlines and isotherms for 

mixed convection regime and Fig. 10 shows the Local Nusselt number, velocity, 

dimensionless temperature and temperature. Both the figure are same as before. The 

effect of Grashof numbers on the average Nusselt number are presented in Fig. 11. 

Overall, the average Nusselt number decreases with the increase of Grashof number. 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Stream lines and isotherms for Ri = 0.01, 0.5, 1, 5, 10, Re = 20, Gr = 20 and Pr = 0.733. 

 

 
 

Fig. 8. Local Nussle number, velocity, temperature and temperature gradient for Ri = 0.01, 0.5, 

1, 5, 10, Re = 20, Gr = 20 and Pr = 0.733. 
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Fig. 9. Stream lines and isotherms for Ri = 0.01, 0.5, 1,5,10, Re = 50, Gr = 50 and Pr = 0.733. 
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Fig. 10. Local Nussle number, velocity, temperature and temperature gradient for Ri = 0.01, 0.5, 

1, 5, 10, Re = 20, Gr = 20 and Pr = 0.733. 
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Gr Ri Nu

10

0.01 49.98399

0.5 49.99788

1 50.01357

5 50.07905

10 50.11686

20

0.01 49.96525

0.5 50.01252

1 50.06032

5 50.16012

10 50.21368

50

0.01 49.9054

0.5 50.10815

1 50.16609

5 50.33589

10 50.41981
 

Fig. 11. Variation of the average Nusselt numbers and Nusselt numbers table along the bottom 

wall of the square cavity with Grashof numbers at different Richardson numbers. 

 

7. Conclusion 

The following conclusions can be drawn from the results of the present work. A 

mathematical model to simulate mixed convection heat transfer in a two-dimensional 

square cavity and the associated computer coding has been developed. The model is 

applied to analyze mixed convection in a square cavity where the cold vertical left and 

right wall are moving with constant velocity and a constant flux heat source is placed 

at the bottom. The direction of lid makes important effect on heat transfer. The 

resulting flow consists of two or more counter-rotating vortices. As far as the 

temperature field is concerned, at low value of Ri, when forced convection is the 

dominant mechanism of heat transfer, the temperature is found to be more evenly 

distributed within the enclosure, and a relatively large region of the enclosure is 

affected by the heat source. As Ri increases the temperature variation is restricted over 

a gradually diminishing regime around the heat source. It is also noticed that the heat-

affected region becomes larger with the increasing heat source length. Higher heat 

transfer is observed for the case of downward moving wall.  

 
Appendix: Nomenclature 

g gravitational acceleration     X, Y          Non-dimensional Cartesian 

coordinates 

L length of the cavity FEM Finite Element Method 

Nu Nusselt number Greek symbols 

P dimensional pressure α   thermal diffusivity 

p pressure β Volumetric coefficient of 

thermal expansion 

Pr Prandtl number ν kinematic viscosity of the fluid 

Ra Rayleigh number     θ non-dimensional temperature 

Re Reynolds number ρ density of the fluid 

Ri Richardson number ψ non-dimensional stream 

function 
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Gr Grashof number Subscripts          

T dimensional temperature            c cold wall 

u, v velocity components h hot wall             

U, V non-dimensional velocity 

components 

 

x, y Cartesian coordinates 
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