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Abstract

This paper suggests sometimes pool estimators for the measure of dispersion in the inverse
Gaussian distribution and their properties are studied in terms of the relative bias and
relative efficiency under two different loss functions.
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1. Introduction

The inverse Gaussian distribution has useful applications in a wide variety of fields such
as Biology, Economics and Medicine [1-3]. It plays an important role in reliability theory
and life testing problems. Let x be the inverse Gaussian variate with the parameters u
(measure of location) and o (measure of dispersion), having probability density function

f(x):\/m exp (—x_'u)zJ;x>0, o,1u>0- (1)

(
20 u’x

- ;1 = 1,2 be two

Here, o' stands as the shape parameter. Let x,, x5, X 5,..., X

independent random samples of size n; and n, drawn from two inverse Gaussian

distributions. The maximum likelihood estimates of (; and o, '. j =1,2 are given as
1 &
i - Xy = X
n; j=1

and
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Also, Xx; and 6, =v,(n, —1)’1 are the unbiased estimates of ¢, and g;i=1, 2,
respectively. The pool unbiased estimator for o is given as
_ v, + v
5 = 1 2 ()
n,+n,— 2

In many real life situations the overestimation and underestimation are not of equal
consequences. For such situations a symmetric loss function like as a square error loss
(SELF) function is not appropriate [4-6]. A useful asymmetric loss function was
introduced by [4], named as the LINEX loss function. The invariant version of the LINEX
loss function (ILLF) [7] for the parameter ¢ is given as

L(A)= e“A—aA—l;a;tOandA:(é—e)é)*‘. (3)

The LINEX loss function rises approximately exponentially on one side of zero and
approximately linearly on the other side. Here, ¢ is an estimate of the parameter . The
sign and magnitude of 'q' represent the direction and degree of asymmetry respectively.
The positive (negative) value of 'q' is used when overestimation is more (less) serious
than underestimation. For 'a' close to zero, the LINEX loss is approximately squared
error and therefore almost symmetric. Recently, some shrinkage testimators for the
inverse dispersion of the inverse Gaussian distribution under the ILLF has been studied
elsewhere [7].

Han and Bancroft [8] have studied the sometimes pool estimator for the mean of a
Normal distribution. They have considered the situation when two independent random
samples are available from two Normal distributions with means 4 and g, and the
common variance. The problem of pooling in different situations has also been considered
by other workers [9-12]. Rai [13] has estimated the mean life of Exponential distribution.
Sometimes pool estimator for shape parameter of the Pareto distribution under the SELF
has been proposed by [14].

In the present article, we have studied the performances of the sometimes pool
estimators for o under the SELF and ILLF.

2. The Proposed Class of Estimators

We consider a class of estimators for o of the model (1) as
Y=Cs,;CeR". 4

The risk of Y under the SELF and ILLF are obtained respectively as

R(s)(Y):af{CZW—2C+ 1}, (5)

1
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and

—a ac) " n,—1 (6)
R, (Y)=e 1—7 +a(1-C)-1; ¢, = -
1

The suffix S and L stand respectively for the risk under the SELF and ILLF criteria.
The values of C which minimize the risks R (Y) and R,(Y) respectively are given as

c =% _and C,= P exp |- :
o, +1 a o, + 1

The minimum risk estimators of o in the class ¥ with their respective risks are given

as

Estimator Risks

2
0,

o, + 1

R Y . @, +l-a
(L)(Yl) =e -
¢, +l-a o, +1

Ry (Y,)=0? { C? %”_ 20, + 1}
1

Ro(7) = <¢1+1>[exp - =) 1] v

R(S) (Yl) =

3. The Proposed Pool Class of Estimators
We consider a class of the pooled estimator for o of the distribution (1) as
S=15;1leR". 7

The expressions of the risks for § under the SELF and ILLF, respectively are given
as

R(S)(g)zgg{,zW_N +1}; p ! ®)
Pt @, 2

and
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- _ l
R(L)(S)z e “(1—“} +a(l-1)-1. ©)
¢, + 9,

The values of [ for which the risks R (S)(S) and R(L)(S) are minimum, are given

respectively as

| = ¢, t @, andl =(P1+(02 1—exp . a .
"o+, ’ a P+ @,+1

The improved classes of pooled estimator for o with their respective risks are given
as

Estimator Risks

2
0,

P+ @,+1

2):((ol+ @,+1 )(exp (—GJ— l] + a
o+ @,+1

S, =100 R(S)(ﬁl):

>

4. The Proposed Sometimes Pool Estimators and their Properties

Our interest is to estimate the parameter o; when it is suspect but not known for certain
that o; = o, Before pooling the two sample estimates for the estimation of the
parameter o, the test of hypothesis H,: o; = 0, may be performed at some pre-assigned
level of significance «. The test statistic for Hj is given as

F = (nz_l)V1~F (10)

- 1), (=1, (=)

The proposed sometimes pooled estimator is given as
. _{ 1,7 iffi<F<f, (11)
Ogr, =

Coa, else

s

where i = 1,2 and f}, f, are the lower and upper 1002/2% points of the F distribution with
(n1-1) and (ny-1) degrees of freedom. The hypothesis Hj is rejected when F < f, or F' > f,
and p, [F <f, orF Zfz] =a. Thus if a=0, 6, = 1,5 and it is always pool
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estimator. If g =1 C, ¢, and it is never pool estimator. Otherwise it is sometimes

’ 657", =
pool estimator.
The relative biases for the estimators 4 sr i =12 are obtained as

s (s,,)- E10n)
1
:G{FUFZ’(AI’I_ AiO)’ 0’0}+Ci_ L, (12)

i0 ’

whereA_]:M A =G Fl:(nz—IJJJCs:Ul’ Fzz(nz—lJé

5(¢)]+¢)2), @, nl_l fz 0-2 nl—l 71’
r 1 £, ¢,-1
G{FI’FTWI’WZ’F}: (¢l+ ¢2+ +r) WIZZ Q1+ +l+rdZZ
I'e, I'p, P+ Z,—w,)

and w, and W, are functions of 7, .
The expressions of the risks under the SELF and ILLF for 6, ; i = 1,2 are obtained

as

R(S>(5ST,-): h {G{FI’FZ’ (Afl— Afo)’ 0, 1}
-2G{F,F,,(A,,— A,).0,0}+1-C,} (13)
and
R(L)((}ST,): e “{G{F,F,La(A,-A,). -1}
+G{0, o LaA,,—~1}}+a(1-C)-1
~aG{F,F,, (A= A, 0,0};i=12 (14)

The relative efficiencies for the pooled estimator 6o with respect to y, and 6o

with respect to ¥, under the SELF and ILLF criteria are defined as

R (S)<6-ST, ’ Y,.) = R(S)(Yi)/R(S)(OA-ST,)

and
RE(L)(OA-ST, ’ Yi) = R(L)(Yi)/R(L)(OA-ST,) :

The expressions of the relative biases and relative efficiencies are the functions of n;,
ny, 9, @ and a. For the selected set of values of (7, n,) =05,08,10; J =0.60(0.20)180 ;

a =+025,+050 and ¢ =0.01,0.05,010,015 the relative biases and relative efficiencies

have been calculated. The 16-point Gauss-Legendre quardature formula is used to solve
the integrations involved in relative biases and relative efficiencies. The relative biases are
not presented here and the relative efficiencies have been presented in the Tables 1 to 4
for o =0.01 and 0.05.
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Table 1. Relative efficiency between & o7 and Y, under SELF.

a =0.01 o
n, n, 0.60 0.80 1.00 1.20 1.40 1.60 1.80

05 1.5406 2.1106 2.7387 2.4039 2.2887 2.1675 2.0579
05 08 1.4563 24582 3.4010 29121 2.6405 23816 2.1672
10 1.4395 2.6305 3.7701 3.1776 2.7969 24526 2.1826
05 1.4683 19306 2.4863 2.1903 2.0973 1.9972 1.9059
08 08 1.3558 2.1473 29177 2.5092 2.2952 2.0899 1.9199
10 1.2717 23718 3.4216 2.8622 2.4941 2.1754 1.9335
05 1.4421 1.8927 2.4432 21527 2.0603 19615 1.8072
10 08 1.3378 19756 2.6143 22598 2.1014 19869 1.8154
10 1.2376  2.2284 3.1354 2.6236 2.3130 2.0419 1.8319
a =0.05
05 1.4924 19694 25446 22366 2.1335 2.0255 1.9296

05 08 1.4482 22873 3.0479 25793 23458 2.1401 1.9790
10 14212 24401 3.3005 27331 24267 2.1756 1.9893
05 1.4266 1.7779 2.2942 2.0447 19778 1.8977 1.8114
08 08 1.3226  1.9333  2.5948 22581 2.1007 1.9439 1.8121
10 1.2472  2.0786 2.8991 2.4678 22177 19921 1.8166
05 1.4124 1.7403 22506 2.0132 19513 1.8231 1.7171
10 08 1.3163  1.7975 2.3847 2.0981 19770 1.8486 1.7273
10 1.2257 19396 2.7256 2.3484 2.1186 1.9038 1.7363

Table 2. Relative efficiency between & or and y, under SELF for ¢ =0.01.

a = -0.50 o

n, n, 0.60 0.80 1.00 1.20 1.40 1.60 1.80

05 1.7843 22528 28015 24094 22705 2.1382  2.0233
05 08 1.7431  2.7441  3.6105 3.0089  2.6881  2.4029  2.1740
10 1.6963  3.0198 4.1381  3.3815 29162  2.5223 22233
05 1.5696  1.8743 23225  2.0231 1.9370  1.8521 1.7771
10 08 1.4889  2.1963  2.8413 23841 2.1610 1.9630  1.8036
10 1.4164 23859 3.1923  2.6053 22725 19969 1.8177
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Table 2 (continued)

a=-0.25
05 1.6618  2.1804  2.7664  2.4026 22754  2.1489 2.0370
05 08 1.5903  2.6249  3.5512  2.9945 2.6877 24074  2.1800
10 1.5383  2.8687  4.0485 3.3491 29018 25149 22191
05 1.5089 1.8400 2.3087  2.0257 1.9480 1.8680 1.7958
10 08 1.4030  2.1359  2.8219  2.3931 2.1801 1.9853 1.8264
10 1.3243 23117  3.1732  2.6198  2.2951 2.0199 1.8292
a=0.25
05 14203  2.0355 27053 24031 23022 2.1878  2.0815
05 08 1.3084  2.3971 34532 29896 2.7099  2.4360  2.2085
10 1.2554 25894  3.8974 33100 2.8944  2.5168 2.2237
05 1.3879 1.7726  2.2855 2.0372 1.9779 1.9082 1.8420
10 08 12385 20187 27920 24235 22319 2.0429  1.8540
10 1.1504  2.1694  3.1498  2.6673 2.3576  2.0805 1.8644
a =0.50
05 1.3302 1.9642  2.6814 24129  2.3265 22184  2.1146
05 08 1.1799  2.2908 34176  3.0022  2.7348  2.4618 2.2319
10 1.1300 24635 3.8394  3.3056 29024  2.5264 22325
05 1.3077 1.7398  2.2767  2.0468 1.9974 1.9333 1.8702
10 08 1.1603 1.9625 2.7822 24459 22657 2.0793 1.9197
10 1.0689  2.1021 3.1472  2.7023 2.3994  2.1196 1.9910
Table 3. Relative efficiency between & 57, and Y; under ILLF for ¢ =0.01.
a=-050 6
n, n, 0.60 0.80 1.00 1.20 1.40 1.60 1.80
05 1.3799 1.9940 2.7103 2.3035  2.2241 2.1205 2.0190
05 08 1.2934  2.3075 3.3753 2.8072  2.5730 23237  2.1086
10 1.2572 24599  3.7182  3.0405 2.6992  2.3645 2.0947
05 1.3317 1.8079  2.4141 2.0501 1.9887 1.9083 1.8294
10 08 1.2364 1.8978  2.6097 2.1720  2.0387 1.9644 1.7661
10 11312 21173 3.1418 25496 22669  2.0002  1.7875
a=-0.25
05 1.4500 2.0422 27135 22743 2.1796  2.0705 1.9683
05 08 1.3588  2.3689  3.3763 2.7616  2.5169 22713 2.0639
10 1.3151 2.5291 3.7263 3.0026  2.6536 23257  2.0650
05 1.3790 1.8422 24205  2.0323 1.9578 1.8708 1.7891
10 08 1.2800 1.9281 2.6121 2.1420  2.0007 1.8861 1.7306
10 1.1769  2.1623 3.1626  2.4996  2.2124 1.9524 1.7482

&3
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Table 3 (continued)

a=0.25
05 1.6195  2.1545 27380 2.2382  2.1187 2.0013  1.8985
05 08 1.5262 25234 37011 27075  2.4441  2.2038  2.0083
10 1.4683 27087  3.7829 29645 25998  2.2813  2.0345
05 1.4915 19201  2.4405 2.0055 1.9081 1.8107 1.7250
10 08 1.3823  1.9997 26217  2.0991 1.9442  1.8792  1.6781
10 1.2881 22697 3.1716 24263  2.1317 1.8829  1.6925
a = 0.50
05 1.7166 22149 27559  2.2286  2.0992 19788  1.8760
05 08 1.6274  2.6120  3.8272  2.6942 24228  2.1844  1.9935
10 1.5633  2.8147 3.8252 29593 25871 22718  2.0304
05 1.5558  1.9622 24530  1.9961 1.8890  1.7875  1.7005
10 08 1.4405  2.0399 2.6374 2.0850 1.9242  1.8179  1.6597
10 1.3534 23306 3.2197 24008 2.1033 1.8590 1.6741

Table 4. Relative efficiency between 6sr, and y, under ILLF for ¢ =0.01.
a=-050 0
n ny 0.60 0.80 1.00 1.20 1.40 1.60 1.80
05 1.6066  2.1385  2.7699  2.4378  2.3240  2.2003 2.0865
05 08 1.5492  2.5666  3.5634  3.0552  2.7567 2.4670 22262
10 1.5103  2.7989  4.0536 3.4129 29685 2.5651 2.2513
05 14730 1.8150 23065 2.0414 19729 18967  1.8255
10 08 1.3671  2.1024  2.8365  2.4358 2.2284  2.0290 1.8627
10 1.2947 22694  3.1904 2.6717 23479  2.0621 1.8797
a=-0.25
05 1.5747  2.1235  2.7522 24189 23047 2.1824  2.0710
05 08 1.4984  2.5385 3.5312  3.0214  2.7253 24422  2.2085
10 1.4518  2.7625 4.0103  3.3681 29306  2.5384  2.2347
05 1.4610 1.8106  2.3014  2.0358 1.9672 1.8916 1.8214
10 08 1.3438  2.0897 2.8211 24210 22160  2.0204 1.8578
10 1.2657  2.2549  3.1751 2.6562  2.3356  2.0548 1.8671
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Table 4 (continued)
a =0.25
05 1.5035  2.0915 27158 23814 22669  2.1481 2.0416
05 08 1.3901  2.4780 3.4648  2.9541 2.6645  2.3948  2.1748

10 1.3294  2.6863  3.9258  3.2831  2.8596  2.4889  2.2047
05 1.4348  1.8015 2.2912  2.0248 1.9560 1.8817  1.8134

10 08 1.2942  2.0632  2.7892 2.3910  2.1912 2.0034 1.8484
10 1.2045  2.2230 3.1413  2.6236 23106  2.0403 1.8522
a =0.50
05 14636  2.0746  2.6975 2.3628 2.2485 2.1315 2.0275
05 08 1.3328  2.4461 3.4308 29207 2.6349 23720  2.1589

10 1.2658  2.6469  3.8845  3.2426  2.8263  2.4660  2.1912
05 1.4204  1.7967 2.2860  2.0193  1.9505 1.8769  1.8096
10 08 1.2678  2.0493 27729 23760 2.1790  1.9951 1.8440
10 1.1723 22057  3.1228 2.6066  2.2978  2.0330  1.8498

5. Recommendation

The absolute relative bias (ARB) of &, first decreases and then increases steadily as n,

increases for all considered values of J for fixed o, and n,. The bias is almost negligible
near 6 = 100. The values of ARB of 4 o decrease (increase) as g (n,) increases for all

considered values of 0 except d near 1.00.
The bias of & o7, is almost negligible for all considered values of 6. The ARB of &

decreases as 1 increases for all 6 when other parametric values are fixed but it increases
as n, increases for all J (except 0 near 1.00). The opposite trend has been seen

when ¢ (< 0.10) increases. The decreasing trend also has been seen as 'a' increases for &
> 0.80 when other values are fixed.

5.1. Under SELF risk criterion

The estimator & orsi=12 is more efficient than the estimator Y, i=12 respectively in

the effective interval 0.60<5<1.80 for all considered values of the parametric space and
attains maximum efficiency at the point §=1.00.
The relative efficiency RE(S)(5ST , Yl) increases (decreases) as n,(n,) increases for

0 > 0.80 when other values are fixed. In addition, the gain in efficiency decreases with
increase of & when ¢ > 0.80 for all considered values of the parametric space.
The relative efficiency RE<s>(5sr , Yz) increases (decreases) as n,(« ) increases for

0.80 < 0 < 1.6 (when other parametric values are fixed). The gain in efficiency decreases
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as n, increases. The similar trend has been seen with the increase of "a' when § is small
and other parametric values are fixed.

5.2. Under ILLF risk criterion

The estimator & srsi=12 is more efficient than the estimator Y,;i=12 respectively in

the interval §>0.60 for all considered values of the parametric space and attains
maximum efficiency at the point §=1.00.
The relative efficiency RE(L)(ﬁsr, Yl) decreases for §>0.60 when n; or a. In

addition, the gain in efficiency increases when n, increases for §>0.80. It also increases
with increase of 'a' for §<1.00 when other values are fixed.
The relative efficiency RE(L>(5 - Yz) decreases as 'q' increases for all considered

values of § when o >0.05 and for 6 <1.00 when « <0.05. Other properties of 5 are
similar to & s
On the basis of relative efficiencies we conclude that the estimator & o7

dominates ¢ ;, for all considered values of the parametric space except small sample
1

size and & near 1.00 when 'a' is negative i.e., when overestimation is less serious than
underestimation. On other hand when overestimation is more serious than
underestimation, ¢ ¢, is preferable over 6 ., for large 6 >1.20.

2 1

References

1. J. L. Folks and R. S. Chhikara, Journal of the Royal Statistical Society, Series—B, 40, 263
(1978).

2. J. L. Folks and R. S. Chhikara, The Inverse Gaussian distribution (Marcel Dekker, New York,
1989).

3. V. Seshadri, The Inverse Gaussian distribution. Statistical Theory and Applications, (Springer—
Verlag, New York, 1998).

4. H. R Varian, A Bayesian approach to real estate assessment. In studies in Bayesian
econometrics and statistics in honor of L.J. Savage, Eds S.E. Feinberg and A. Zellner
(Amsterdam North Holland, 1975) p. 195.

5. A. Zellner, Journal of the American Statistical Association, 81, 446 (1986).
doi:10.2307/2289234

6. J. Rojo, Communication in Statistics — Theory and Methods, 16, 3745 (1987).

7. G. Prakash and D. C. Singh, Austrian Journal of Statistics, 35 (4), 463 (2006).

8. C.P.Hanand T. A. Bancroft, Journal of American Statistical Association, 63, 1333 (1968).
doi:10.2307/2285888

9. F. Mosteller, Journal of the American Statistical Association, 43, 231 (1948).
d0i:10.2307/2280369

10. T. Kitagawa, University California Publication of Statistics, 3, 147 (1963).

11. B. K. Kale and T. A. Bancroft, Biometrices, 23, 335 (1967). doi:10.2307/2528166

12. J. Singh, Journal of American Statistical Association, 66, 82 (1971).
doi:10.2307/2284852

13. O. Rai, Communication in Statistics — Theory and Methods, 25, 2057 (1996).

14. B. N. Pandey, B. P. Singh and A. K. Srivastava, Aligarh Journal of Statistics, 25, 35 (2005).



http://dx.doi.org/10.2307/2289234
http://dx.doi.org/10.2307/2285888
http://dx.doi.org/10.2307/2280369
http://dx.doi.org/10.2307/2528166
http://dx.doi.org/10.2307/2284852

