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Abstract 

 

This paper proposed alternative beta estimators of the population proportion of a 

sensitive attribute when life data were obtained through the administration of survey 

questionnaires on abortion of some matured women. The results showed that the 

proposed alternative beta estimators were more efficient in capturing responses from 

respondents than the simple beta estimator proposed by Winkler and Franklin for 

relatively small, medium as well as large sample sizes respectively.  
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1. Introduction 

 

Asking individuals about sexually-related activity, criminal activity, induced 

abortion, etc., is an uneasy exercise. Individuals are often reluctant to freely divulge 

such information in classical survey settings for fear of social disgrace. Yet, for 

public-health and socio-economic reasons, estimates of the incidence of such 

activities are essential. The Randomized Response Technique (RRT) can be a 

useful survey method to find such estimates because individual anonymity is 

preserved. Initial RRT proposed by Warner [1] and Greenberg et al. [2] presumed 

that two yes/no questions were provided for each respondent and that a 

randomization device was used to determine which question would be answered. 

Since the interviewer would not know the result of the device, participants would 

be encouraged to give truthful responses to a sensitive question. This technique has 

generated much interest in the statistical literature since the publication of Warner’s 
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14 Bayesian Analysis 

 

RRT. A comprehensive literature review will not be provided here. Instead, the 

interested reader is referred to the review-oriented references listed herein; namely, 

Mangat et al. [3,4], Christofides [5], Kim and Warde [6], Adebola and Adepetun 

[7-9]. In some situations, prior information about the unknown parameter may be 

available and can be combined with the sample information for the estimation of 

that unknown parameter. This is known as the Bayesian approach of estimation. 

Work done by researchers on Bayesian Analysis of RRTs are not very extensive, 

however, attempts have been made on the Bayesian Analysis of RRTs. Winkler and 

Franklin [10], Pitz [11], O’Hagan [12], Oh [13], Migon and Tachibana [14], 

Unnikrishnan and Kunte [15], Kim et al. [16], Hussain and Shabbir [17-19], 

Adepetun and Adewara [20], Adepetun and Adewara [21,22], are the major 

references on the Bayesian analysis of the RRTs. This paper presents Bayesian 

analysis to Warner’s RRT using alternative beta priors other than the simple beta 

prior used by Winkler and Franklin [10] in their published paper.  

 

2. The Conventional Bayesian Technique of Estimation 

 

Winkler and Franklin [10] in their published paper presented a Bayesian estimation 

to the RRT put forward by Warner [1] assuming a simple beta prior to estimate the 

population proportion of respondents possessing sensitive attribute. 

Suppose the simple beta prior is defined as follows  

𝑓 𝜋 =
1

𝐵 𝑎,𝑏 
𝜋𝑎−1 1 − 𝜋 𝑏−1  ;   0 < 𝜋 < 1           (1) 

 

where (a,b) are the shape parameters of the distribution and π is the population 

proportion of respondents possessing the sensitive attribute. 

Let  be the total number of the women who have committed abortion for 

a particular sample of size n selected from the population with simple random 

sampling. Then the conditional distribution of X given π is  

𝑓 𝑋 𝜋 =  
𝑛

𝑥
 𝜙𝑥 1 − 𝜙 𝑛−𝑥                                                                                                                                                 (2) 

 

Where φ is the probability of “yes response” to the sensitive attribute which was 

defined as 

 𝜙 = 𝑃 𝑦𝑒𝑠 = 𝑃𝜋 +  1 − 𝑃 (1 − 𝜋)                                                                                                                                (3) 

 

Where P is the preset probability of “yes” response to the sensitive attribute 

𝑓 𝑋 𝜋 =  
𝑛

𝑥
 [1 − 𝜋 − 𝑃 + 2𝑃𝜋]𝑥 [𝜋 + 𝑃 − 2𝑃𝜋]𝑛−𝑥  

 

On simplification, we have  

𝑓 𝑋 𝜋 =  
𝑛

𝑥
  2𝑃 − 1 𝑛 𝜋 + 𝑓 𝑥  1 − 𝜋 + ℎ 𝑛−𝑥  

 

where

ℎ = 𝑓 =
1 − 𝑃

2𝑃 − 1
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Recall from binomial series expansion, 

(𝜋 + 𝑓)𝑥 =    𝑥
𝑖
 𝑓𝑥−𝑖𝑥

𝑖=0 𝜋𝑖                                                                                                                

  

(1 − 𝜋 + 𝑓)𝑛−𝑥 =    
𝑛 − 𝑥

𝑗
 𝑓𝑛−𝑥−𝑗

𝑛−𝑥

𝑗=0

 1 − 𝜋 𝑗                                                                          

 

𝑓 𝑋 𝜋 =  
𝑛

𝑥
 [2𝑃 − 1]𝑛    

𝑥

𝑖
  

𝑛 − 𝑥

𝑗
 

𝑛−𝑥

𝑗=0

𝑓𝑛−𝑖−𝑗

𝑥

𝑖=0

𝜋𝑖(1 − 𝜋)𝑗                                                                                (4) 

 

for x = 0,1,2,…,n 

Thus, the joint probability density functions (pdf) of X and π was  

 

𝑓 𝑋, 𝜋 =
 𝑛
𝑥
  2𝑃 − 1 𝑛

𝐵 𝑎, 𝑏 
   

𝑥

𝑖
  

𝑛 − 𝑥

𝑗
 

𝑛−𝑥

𝑗=0

𝑓𝑛−𝑖−𝑗

𝑥

𝑖=0

𝜋𝑖𝜋𝑎−1 1 − 𝜋 𝑏−1  1 − 𝜋 𝑗                                                   (5) 

 
Now the marginal distribution of X can be obtained by integrating the joint 

distribution of X and π with respect to π. Thus the marginal distribution of X was 

given by 

𝑓 𝑋 =  𝑓 𝑋, 𝜋 
1

0

𝑑𝜋 =
[2𝑃 − 1]𝑛

𝐵 𝑎, 𝑏 
 
𝑛

𝑥
    

𝑥

𝑖
  

𝑛 − 𝑥

𝑗
 

𝑛−𝑥

𝑗=0

𝑓𝑛−𝑖−𝑗  𝜋𝑎+𝑖−1(1 − 𝜋)𝑏+𝑗−1𝑑𝜋
1

0

𝑥

𝑖=0

 

 

𝑓 𝑋 =
 2𝑃 − 1 𝑛

𝐵 𝑎, 𝑏 
 
𝑛

𝑥
    

𝑥

𝑖
  

𝑛 − 𝑥

𝑗
 

𝑛−𝑥

𝑗=0

𝑓𝑛−𝑖−𝑗𝐵 𝑎 + 𝑖, 𝑏 + 𝑗 

𝑥

𝑖=0

                                                                             (6) 

 
The posterior distribution of given X was defined as 

 

𝑓 𝜋 𝑋 =
𝑓 𝑋, 𝜋 

𝑓 𝑋 
                                                                                                                                                                    (7) 

 

𝑓 𝜋 𝑋 =

 2𝑃 − 1 𝑛

𝐵 𝑎, 𝑏 
 𝑛
𝑥
    𝑥

𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗𝑥
𝑖=0 𝜋𝑎+𝑖−1 1 − 𝜋 𝑏+𝑗−1

 2𝑃 − 1 𝑛

𝐵 𝑎, 𝑏 
 𝑛
𝑥
    𝑥

𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗𝐵 𝑎 + 𝑖, 𝑏 + 𝑗 𝑥
𝑖=0

 

 

𝑓 𝜋 𝑋 =
   𝑥

𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗𝑥
𝑖=0 𝜋𝑎+𝑖−1 1 − 𝜋 𝑏+𝑗−1

   𝑥
𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗𝐵 𝑎 + 𝑖, 𝑏 + 𝑗 𝑥
𝑖=0

                                                                                          (8) 

 
The Bayes estimator of π which is the posterior mean of (8) was given by 

𝜋 𝑆𝑊 =  𝜋
1

0

𝑓 𝜋 𝑋 𝑑𝜋 =
   𝑥

𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗  𝜋𝑎+𝑖−1 1 − 𝜋 𝑏+𝑗−1𝑑𝜋
1

0
𝑥
𝑖=0

   𝑥
𝑖
  𝑛−𝑥

𝑗
 𝑛−𝑥

𝑗=0 𝑓𝑛−𝑖−𝑗𝐵 𝑎 + 𝑖, 𝑏 + 𝑗 𝑥
𝑖=0

 

 

 =
   𝑥

𝑖
  𝑛−𝑥

𝑗
 𝑓𝑛−𝑖−𝑗𝐵  𝑎 + 𝑖 + 1, 𝑏 + 𝑗 𝑛−𝑥

𝑗=0
𝑥
𝑖=0

   𝑥
𝑖
  𝑛−𝑥

𝑗
 𝑓𝑛−𝑖−𝑗𝐵 𝑎 + 𝑖, 𝑏 + 𝑗 𝑛−𝑥

𝑗=0
𝑥
𝑖=0

                                                                                                         (9) 

 
The Bias of  and its Mean Square Error (MSE) were given by 

𝐵 𝜋 𝑆𝑊 = 𝜋 𝑆𝑊 −  𝜋                                                                                                                                                              (10) 
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𝑀𝑆𝐸 𝜋 𝑆𝑊 =   𝜋 𝑆𝑊 − 𝜋 2𝜙𝑥 1 − 𝜙 𝑛−𝑥
𝑛

𝑥=0

                                                                                                                 (11 

 
3. The Proposed Bayesian Techniques of Estimation 

In this section, we propose an alternative Bayesian estimation to Warner [1] RRT 

assuming both the Kumaraswamy and the Generalised beta priors in addition to the 

simple beta prior proposed by Winkler and Franklin [10]. 

 

3.1. Estimation of π using Kumaraswamy prior 

 

The Kumaraswamy prior distribution of π is given as 

 
𝑓 𝜋 = 𝑏𝑐𝜋𝑐−1 1 − 𝜋𝑐 𝑏−1   ; 𝑏, 𝑐 > 0                                                                                                                            (12)  

 
Using the Kumaraswamy prior in (12), the joint probability density function of 

X and π is derived as  
 

𝑓 𝑋, 𝜋 = 𝑎𝑏𝐴   𝑥
𝑖
  𝑛−𝑥

𝑗
 𝑓𝑥−𝑖ℎ𝑛−𝑥−𝑗𝜋𝑖𝜋𝑐−1 1 − 𝜋 𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0  1 − 𝜋𝑐 𝑏−1                                                         (13) 

 
where  

The marginal probability density function (pdf) of X can be obtained as  

𝑓 𝑋 =  𝑓 𝑋, 𝜋 
1

0

𝑑𝜋                                                                                                                                                           (14) 

 

= 𝑎𝑏𝐴    −1 𝑘
𝑏−1

𝑘=0

 
𝑥

𝑖
  

𝑛 − 𝑥

𝑗
  

𝑏 − 1

𝑘
 𝑓𝑛−𝑖−𝑗

𝑛−𝑥

𝑗=0

𝑥

𝑖=0

𝐵 𝑖 + 𝑐 1 + 𝑘 , 𝑗 + 1                                                        (15) 

= 𝑎𝑏𝐴    −1 𝑘
𝑏−1

𝑘=0

 
𝑥

𝑖
  

𝑛 − 𝑥

𝑗
  

𝑏 − 1

𝑘
 𝑓𝑛−𝑖−𝑗

𝑛−𝑥

𝑗=0

𝑥

𝑖=0

 𝜋𝑐+𝑖−1+𝑐𝑘  1 − 𝜋 𝑗𝑑𝜋
1

0

 

 
Similarly, the posterior distribution as usual is obtained as follows 

 

𝑓 𝜋 𝑋 =
𝑓 𝑋, 𝜋 

𝑓 𝑋 
                                                                                                                         

 

=
    −1 𝑘𝑏−1

𝑘=0  𝑥
𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝜋𝑐+𝑖−1+𝑐𝑘  1 − 𝜋 𝑗

    −1 𝑘𝑏−1
𝑘=0  𝑥

𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑖 + 𝑐 1 + 𝑘 , 𝑗 + 1 

                                                                 (16) 

 
Under the Square error loss, we proceed to obtain the posterior mean which is 

the Bayes estimator as follows 

𝜋 𝐾𝑊 =  𝜋
1

0

𝑓 𝜋 𝑋 𝑑𝜋                                                                                                                                                         (17) 

 
Therefore, 

𝜋 𝐾𝑊 =
    −1 𝑘𝑏−1

𝑘=0  𝑥
𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑐𝑘 + 𝑐 + 𝑖 + 1, 𝑗 + 1 

    −1 𝑘𝑏−1
𝑘=0  𝑥

𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑐 1 + 𝑘 + 𝑖, 𝑗 + 1 

                                                   (18) 

 
As a result, the Bias of as well as its Mean Square Error is also given by 
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𝐵(𝜋 𝐾𝑊) = 𝜋 𝐾𝑊 − 𝜋                                                                                                                                                             (19) 

 

𝑀𝑆𝐸(𝜋 𝐾𝑊) =   𝜋 𝐾𝑊 − 𝜋 2𝜙𝑥 1 − 𝜙 𝑛−𝑥

𝑛

𝑥=0

                                                                                                               (20) 

 
3.2. Estimation of π using the generalised beta prior 

 

The Generalised Beta prior is defined as  
 

𝑓 𝜋 =
𝑐

𝐵 𝑎, 𝑏 
𝜋𝑎𝑐−1 1 − 𝜋𝑐 𝑏−1;    𝑎, 𝑏, 𝑐 > 0                                                                                                            (21) 

 
where a, b. c are the shape parameters of the prior distribution as given in equation 

(21). 

By binomial series expansion, we know that 
 

 1 − 𝜋𝑐 𝑏−1 =   −1 𝑘  
𝑏 − 1

𝑘
 

𝑏−1

𝑘=0

 𝜋𝑐 𝑘  

 
Consequently 
 

𝑓 𝜋 =
𝑐

𝐵 𝑎, 𝑏 
  −1 𝑘  

𝑏 − 1

𝑘
 

𝑏−1

𝑘=0

𝜋𝑐(𝑘+𝑎)−1 

 
As a result, the joint density function of π and X with the generalized beta prior 

is  
 

𝑓 𝑋, 𝜋 =
𝑐 𝑛

𝑥
  2𝑃 − 1 𝑛

𝐵 𝑎, 𝑏 
    −1 𝑘

𝑏−1

𝑘=0

 
𝑥

𝑖
  

𝑛 − 𝑥

𝑗
  

𝑏 − 1

𝑘
 𝑓𝑛−𝑖−𝑗𝜋𝑖 1 − 𝜋 𝑗

𝑛−𝑥

𝑗=0

𝑥

𝑖=0

𝜋𝑐 𝑘+𝑎 −1                        (22) 

 
The marginal probability density function (pdf) of X can then be obtained from 

(22) as 
 

𝑓 𝑋 =  𝑓 𝑋, 𝜋 
1

0

𝑑𝜋                                                                                                                                                           (23) 

 

= 𝐷    −1 𝑘  
𝑥

𝑖
  

𝑛 − 𝑥

𝑗
  

𝑏 − 1

𝑘
 

𝑏−1

𝑘=0

𝑓𝑛−𝑖−𝑗𝐵 𝑐 𝑘 + 𝑎 + 𝑖, 𝑗 + 1 

𝑛−𝑥

𝑗=0

𝑥

𝑖=0

                                                            (24) 

 
where   

Similarly, we obtained the posterior distribution of π given X as  
 

𝑓 𝜋 𝑋 =
    −1 𝑘𝑏−1

𝑘=0  𝑥
𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝜋𝑐 𝑘+𝑎 +𝑖−1 1 − 𝜋 𝑗

    −1 𝑘𝑏−1
𝑘=0  𝑥

𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑐 𝑘 + 𝑎 + 𝑖, 𝑗 + 1 

                                                  (25) 

 
In the same way, under the square error loss, the posterior mean which is 

otherwise known as the Bayes estimator is given by 
 

𝜋 𝐺𝑊 =
    −1 𝑘𝑏−1

𝑘=0  𝑥
𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑐 𝑘 + 𝑎 + 𝑖 + 1, 𝑗 + 1 

    −1 𝑘𝑏−1
𝑘=0  𝑥

𝑖
  𝑛−𝑥

𝑗
  𝑏−1

𝑘
 𝑓𝑛−𝑖−𝑗𝑛−𝑥

𝑗=0
𝑥
𝑖=0 𝐵 𝑐 𝑘 + 𝑎 + 𝑖, 𝑗 + 1 

                                               (26) 

 
The Bias of  and its Mean Square Error (MSE) are respectively given by 

 



18 Bayesian Analysis 

 
𝐵 𝜋 𝐺𝑊 = 𝜋 𝐺𝑊 − 𝜋                                                                                                                                                              (27) 

 

𝑀𝑆𝐸 𝜋 𝐺𝑊 =   𝜋 𝐺𝑊 − 𝜋 2 

𝑛

𝑥=0

𝜙𝑥 1 − 𝜙 𝑛−𝑥                                                                                                                 (28) 

 
4. Results and Discussions 

 

We wrote suitable codes using R-statistical software to evaluate the derived 

estimators, bias and mean square errors which are given by equations 18-20 and 26-

28 at sample sizes 25, 100, and 250 respectively. 

From the results presented in Tables and Figs. 1a-6b respectively, when n = 25, 

P = 0.1 and 0.2, the conventional simple beta estimator is better than the proposed 

estimators when π lies within the range 0.1 ≤ π < 0.7 while the proposed estimators 

are better than the conventional simple beta estimator when π lies within the range 

0.7 ≤  < 1. However, the proposed Kumaraswamy beta estimator is the best in 

obtaining more responses from respondents when π lies within the range 0.7 ≤  < 

1. 

When n = 100, P = 0.1 and 0.2, the conventional simple beta estimator is better 

than the proposed estimators when π lies within the range 0.1 ≤ π ≤ 0.5 while the 

proposed estimators are better than the conventional simple beta estimator when π 

lies within the range 0.6 ≤ π < 1. However, the proposed Kumaraswamy beta 

estimator is the best in obtaining more responses from respondents when π lies 

within the range 0.6 ≤ π < 1. 

When n = 250, P = 0.1 and 0.2, the conventional simple beta estimator is better 

than the proposed estimators when π lies within the range 0.1 ≤ π  < 0.5 while the 

proposed estimators are better than the conventional simple beta estimator when π 

lies within the range 0.6 ≤ π < 1. However, the proposed Kumaraswamy beta 

estimator is the best in obtaining more responses from respondents when π lies 

within the range 0.6 ≤ π < 1 respectively. 

 
Table 1a. Mean square errors for Warner [1] RRT at n =25, x = 15, P = 0.1.  
 

π MSE BETA MSE KUMA MSE GLS 

0.1 2.593655E-09 3.279120E-08 3.522085E-08 

0.2 8.250555E-10 2.524261E-08 2.737966E-08 

0.3 4.250544E-11 1.868008E-08 2.052453E-08 
0.4 2.460048E-10 1.310359E-08 1.465545E-08 

0.5 1.435554E-09 8.513156E-09 9.772417E-09 

0.6 3.611152E-09 4.908769E-09 5.875434E-09 

0.7 6.772799E-09 2.290431E-09 2.964500E-09 

0.8 1.092050E-08 6.581424E-10 1.039615E-09 

0.9 1.605424E-08 1.190337E-11 1.007795E-10 

 
Table 1b. Absolute bias for Warner [1] RRT at n = 25, x = 15, P = 0.1.  
 

π |BIAS|BETA |BIAS|KUMA |BIAS| GLS 

0.1 0.22936215 0.81553820 0.84521180 

0.2 0.12936215 0.71553820 0.74521180 

0.3 0.02936215 0.61553820 0.64521180 
0.4 0.07063785 0.51553820 0.54521180 
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π |BIAS|BETA |BIAS|KUMA |BIAS| GLS 

0.5 0.17063785 0.41553820 0.44521180 

0.6 0.27063785 0.31553820 0.34521180 
0.7 0.37063785 0.21553820 0.24521180 

0.8 0.47063785 0.11553820 0.14521180 

0.9 0.57063785 0.01553820 0.04521180 
 

 
Fig. 1a. Mean square errors for Warner [1] RRT at n = 25, x = 15, P = 0.1.  

 

 
 

Fig. 1b. Absolute bias for Warner [1] RRT at n = 25, x = 15, P = 0.1.  

 
Table 2a. Mean square errors for Warner [1] RRT at n = 25, x = 15, P = 0.2. 
 

π MSE BETA MSE KUMA MSE GLS 

0.1 2.950359E-09 3.194863E-08 3.484665E-08 
0.2 1.031248E-09 2.450403E-08 2.704986E-08 

0.3 9.818604E-11 1.804548E-08 2.023912E-08 

0.4 1.511737E-10 1.257298E-08 1.441443E-08 
0.5 1.190211E-09 8.086532E-09 9.575786E-09 

0.6 3.215297E-09 4.586132E-09 5.723192E-09 

0.7 6.226433E-09 2.071782E-09 2.856649E-09 
0.8 1.022362E-08 5.434806E-10 9.761541E-10 

0.9 1.520685E-08 1.228796E-12 8.170904E-11 
 

Table 2b. Absolute bias for Warner [1] RRT at n = 25, x = 15, P = 0.2. 
 

π |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.24462626 0.80499236 0.84070996 

0.2 0.14462626 0.70499236 0.74070996 
0.3 0.04462626 0.60499236 0.64070996 

0.4 0.05537374 0.50499236 0.54070996 

0.5 0.15537374 0.40499236 0.44070996 
0.6 0.25537374 0.30499236 0.34070996 

0.7 0.35537374 0.20499236 0.24070996 

0.8 0.45537374 0.10499236 0.14070996 
0.9 0.55537374 0.00499236 0.04070996 
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Fig. 2a. Mean square errors for Warner [1] RRT at n = 25, x = 15, P = 0.2.  

 

 
 
Fig. 2b. Absolute bias for Warner [1] RRT at n = 25, x = 15, P = 0.2. 

 

Comment: When n = 25, P= 0.1 and 0.2, the conventional simple beta estimator 

is better than the proposed estimators when π lies within the range 0.1 ≤ π < 0.7 

while the proposed estimators are better than the conventional simple beta estimator 

when π lies within the range 0.7 ≤ π < 1. However, the proposed Kumaraswamy 

beta estimator is the best in obtaining more responses from respondents when π lies 

within the range 0.7 ≤ π < 1 respectively. 

 
Table 3a. Mean square errors (MSEs) for Warner [1] RRT at n = 100,  

x = 60, P = 0.1. 
 

π MSE BETA MSE KUMA MSE GLS 

0.1 1.910454E-33 4.544300E-30 4.571518E-30 

0.2 3.974625E-32 3.567048E-30 3.591167E-30 

0.3 1.957513E-31 2.707966E-30 2.728985E-30 

0.4 4.699257E-31 1.967052E-30 1.984973E-30 

0.5 8.622694E-31 1.344308E-30 1.359130E-30 

0.6 1.372782E-30 8.397336E-31 8.514565E-31 

0.7 2.001465E-30 4.533281E-31 4.619522E-31 

0.8 2.748316E-30 1.850919E-31 1.906172E-31 

0.9 3.613337E-30 3.502502E-32 3.745154E-32 
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Table 3b. Absolute bias for Warner [1] RRT at n = 100, x = 60, P = 0.1.  
 

π |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.01798171 0.87699311 0.87961547 

0.2 0.08201829 0.77699311 0.77961547 

0.3 0.18201829 0.67699311 0.67961547 

0.4 0.28201829 0.57699311 0.57961547 

0.5 0.38201829 0.47699311 0.47961547 

0.6 0.48201829 0.37699311 0.37961547 

0.7 0.58201829 0.27699311 0.27961547 

0.8 0.68201829 0.17699311 0.17961547 

0.9 0.78201829 0.07699311 0.07961547 

 

 
 

Fig. 3a. Mean square errors for Warner [1] RRT at n = 100, x = 60, P = 0.1. 

 

 
 

Fig. 3b.Absolute bias for Warner [1] RRT at n = 100, x = 60, P = 0.1. 

 
Table 4a. Mean square errors for Warner [1] RRT at n = 100, x = 60, P = 0.2.  
 

π MSE BETA MSE KUMA MSE GLS 

0.1 1.038804E-32 4.497484E-30 4.537997E-30 

0.2 1.992377E-32 3.525584E-30 3.561464E-30 

0.3 1.476288E-31 2.671854E-30 2.703100E-30 

0.4 3.935031E-31 1.936292E-30 1.962906E-30 

0.5 7.575468E-31 1.318900E-30 1.340881E-30 

0.6 1.239760E-30 8.196778E-31 8.370250E-31 

0.7 1.840142E-30 4.386244E-31 4.513386E-31 

0.8 2.558694E-30 1.757403E-31 1.838214E-31 

0.9 3.395414E-30 3.102549E-32 3.447361E-32 
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Table 4b. Absolute bias for Warner [1] RRT at n = 100, x = 60, P = 0.2.  
 

π |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.04193045 0.87246395 0.87638464 

0.2 0.05806955 0.77246395 0.77638464 

0.3 0.15806955 0.67246395 0.67638464 

0.4 0.25806955 0.57246395 0.57638464 

0.5 0.35806955 0.47246395 0.47638464 

0.6 0.45806955 0.37246395 0.37638464 

0.7 0.55806955 0.27246395 0.27638464 

0.8 0.65806955 0.17246395 0.17638464 

0.9 0.75806955 0.07246395 0.07638464 

 

 

 
Fig. 4a. Mean square errors for Warner [1] RRT at n = 100, x = 60, P = 0.2.  

 

 
 
Fig. 4b. Absolute bias for Warner [1] RRT at n = 100, x = 60, P = 0.2. 

 

Comment: When n = 100, P = 0.1 and 0.2, the conventional simple beta 

estimator is better than the proposed estimators when π lies within the range 0.1 ≤ π 

≤ 0.5 while the proposed estimators are better than the conventional simple beta 

estimator when π lies within the range 0.6 ≤ π < 1. However, the proposed 

Kumaraswamy beta estimator is the best in obtaining more responses from 

respondents when π lies within the range 0.6 ≤ π < 1 respectively. 
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Table 5a. Mean square errors for Warner [1] RRT at n = 250, x = 150, P = 0.1.  
 

π MSE BETA MSE KUMA MSE GLS 

0.1 2.391605E-76 6.732776E-74 6.738953E-74 

0.2 1.988715E-75 5.305916E-74 5.311400E-74 

0.3 5.435405E-75 4.048770E-74 4.053560E-74 

0.4 1.057923E-74 2.961337E-74 2.965434E-74 

0.5 1.742019E-74 2.043618E-74 2.047022E-74 

0.6 2.595829E-74 1.295612E-74 1.298323E-74 

0.7 3.619353E-74 7.173205E-75 7.193377E-75 

0.8 4.812590E-74 3.087423E-75 3.100662E-75 

0.9 6.175541E-74 6.987772E-76 7.050828E-76 

 
Table 5b. Absolute bias for Warner [1] RRT at n = 250, x = 150, P = 0.1. 
 

π |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.05308861 0.89074569 0.89115421 

0.2 0.15308861 0.79074569 0.79115421 

0.3 0.25308861 0.69074569 0.69115421 

0.4 0.35308861 0.59074569 0.59115421 

0.5 0.45308861 0.49074569 0.49115421 

0.6 0.55308861 0.39074569 0.39115421 

0.7 0.65308861 0.29074569 0.29115421 

0.8 0.75308861 0.19074569 0.19115421 

0.9 0.85308861 0.09074569 0.09115421 

 

 
 

Fig. 5a. Mean square errors for Warner [1] RRT at n = 250, x = 150, P = 0.1. 

 

 
 

Fig. 5b. Absolute bias for Warner [1] RRT at n = 250, x = 150, P = 0.1. 
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Table 6a. Mean square errors for Warner [1] RRT at n = 250, x = 150, P = 0.2.  
 

π MSE BETA MSE KUMA MSE GLS 

0.1 1.701448E-76 6.706874E-74 6.715781E-74 

0.2 1.778659E-75 5.282925E-74 5.290830E-74 

0.3 5.084309E-75 4.028689E-74 4.035593E-74 

0.4 1.008710E-74 2.944167E-74 2.950069E-74 

0.5 1.678702E-74 2.029359E-74 2.034259E-74 

0.6 2.518408E-74 1.284264E-74 1.288163E-74 

0.7 3.527827E-74 7.088829E-75 7.117805E-75 

0.8 4.706960E-74 3.032154E-75 3.051114E-75 

0.9 6.055807E-74 6.726140E-76 6.815597E-76 

 
Table 6b. Absolute bias for Warner [1] RRT at n = 250, x = 150, P = 0.2. 
 

π |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.04477813 0.88903066 0.88962076 

0.2 0.14477813 0.78903066 0.78962076 

0.3 0.24477813 0.68903066 0.68962076 

0.4 0.34477813 0.58903066 0.58962076 

0.5 0.44477813 0.48903066 0.48962076 

0.6 0.54477813 0.38903066 0.38962076 

0.7 0.64477813 0.28903066 0.28962076 

0.8 0.74477813 0.18903066 0.18962076 

0.9 0.84477813 0.08903066 0.08962076 

 

 
 

Fig. 6a. Mean square errors for Warner [1] RRT at n = 250, x = 150, P = 0.2. 

 

 
 
Fig. 6b. Absolute bias for Warner [1] RRT at n = 250, x = 150, P = 0.2. 
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Comment: When n = 250, P = 0.1 and 0.2, the conventional simple beta 

estimator is better than the proposed estimators when π lies within the range 0.1 ≤ π 

< 0.5 while the proposed estimators are better than the conventional simple beta 

estimator when π lies within the range 0.6 ≤ π < 1. However, the proposed 

Kumaraswamy beta estimator is the best in obtaining more responses from 

respondents when π lies within the range  0.6 ≤ π < 1 respectively. 

 

5. Conclusion 

We have proposed the alternative Bayesian estimators of the population proportion 

when life data were gathered through the administration of questionnaires on 

abortion on 300 matured women in addition to the conventional simple beta 

estimator proposed by Winkler and Franklin [10]. We observed clearly from the 

results that for relatively small, intermediate as well as large sample sizes, the 

proposed Bayesian estimators are more sensitive in capturing sensitive attribute 

than the conventional simple beta estimator. In particular, the proposed 

Kumaraswamy beta estimator is the best in obtaining information from respondents 

in survey which asks sensitive questions. 
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