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Abstract 
 

In this paper, we have developed an instantaneous replenishment policy for deteriorating 
items with price-dependent demand. The demand and deterioration rates are continuous and 
differentiable function of price and time respectively. A variable proportion of the items 
will deteriorate per time, where shortages are permissible and completely backordered. We 
have developed a policy with price-dependent demand under profit maximization. The net 
profit per unit time is a concave function. Further, it is illustrated with the help of a 
numerical example. 
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1.  Introduction 

An optimal replenishment policy is dependent on ordering cost, inventory carrying cost 
and shortage cost. An important problem confronting a supply manager in any modern 
organization is the control and maintenance of inventories of deteriorating items. 
Fortunately, the rate of deterioration is too small for items like steel, hardware, toys, 
glassware etc. There is little requirement for considering deterioration in the determination 
of economic lot size. Deterioration is defined as change, damage, decay, spoilage, 
obsolescence and loss of utility or loss of marginal value of a commodity that results in 
decreasing usefulness from the original one. The demand rate is assumed to be constant in 
deterministic inventory models. Covert and Philip [1] considered the assumption of 
constant deterioration rate to represent the distribution of time to deterioration by using a 
two-parameter Weibull distribution. Further, Philip [2] generalized this model by 
assuming a three–parameter Weibull distribution. Misra [3] adopted a two-parameter 
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Weibull distribution deterioration to develop an inventory model with finite rate of 
replenishment. These investigations were followed by works by several researchers like 
Shah and Jaiswal [4], Aggarwal [5], Roy-Chaudhury and Chaudhuri [6]. It has been 
empirically observed that the failure and life expectancy of many items can be expressed 
in terms of Weibull distribution. This empirical observation has prompted researchers to 
represent the time of deterioration of a product by a Weibull distribution. The model of 
Ghare and Schrader [7] was extended by Covert and Philip [1] who obtained an EOQ 
model with a variable rate of deterioration by assuming a two-parameter Weibull 
distribution. Later on  several other  researchers  like Tadikamalla [8], Mukhopadhyay et 
al. [9, 10], Chakrabarty et al. [11]  developed economic order quantity models. Therefore, 
a realistic model is taken in which the deterioration rate is being treated as a time varying 
function. 

A lot of theoretical papers have the assumption that the deterioration rate follows the 
Weibull distribution. The main attention towards this topic is given by Goyal and Giri 
[12]. This paper deals with units of the product in stock, which is subjected to 
deterioration. In this extent the investigations were followed by several researchers like 
Chakrabarty et al. [11], Chen and Lin [13], Ghosh and Chaudhuri [14], Mahapatra and 
Maiti [15], Mondal et al. [16], Wu and Lee [17]. Most researchers on the work of 
deteriorating inventory assumed constant rate of deterioration. However, the Weibull 
distribution is used to represent the product in stock which deteriorates with time. At first 
Wagner and Whitin [18] considered an inventory model for goods which deteriorated at 
the end of a prescribed storage period. Ghare and Schrader [7] revised an economic order 
quantity model by considering exponential decay in inventory. The further extension to 
the case of three-parameter Weibull distribution deterioration was done by Shah [19]. 
Goel and Aggarwal [20] considered a model by assuming varying rate of deterioration. 

In real life situation, the retailer’s lot size is affected by the demand of the product and 
the demand is dependent on the price of the product. Therefore, the problems of 
determining the retail price and lot size are inter-dependent. Kim et al. [21] studied joint 
price and lot size determination problems for deteriorating products with constant rate of 
deterioration. Wee [22] also studied the joint pricing and replenishment policy for a 
deteriorating inventory with price elastic demand rate that decline over time. Abad [23] 
considered the dynamic pricing and lot sizing problem of perishable goods under partial 
backlogging of demand. He modeled the backlogging phenomenon using a new approach 
in which customers are considered impatient. In reality, the effect of marketing policies 
and the conditions like the price variations and advertisement of an item changes its 
selling rate among the persons in the recent competitive market. The proper selection to 
make use of an item, create ideas in customers who are able to make decisions quickly for 
the selling price of any item. It is commonly seen that lesser selling price causes increase 
in the selling rate whereas higher selling price has the reverse effect. Hence, the selling 
rate of an item is dependent on the selling price of that item. This selling rate function 
must be a decreasing function with respect to the selling price. Several researchers like 
Ladnay and Sternleib [24], Goyal and Gunasekaran [25], Luo [26], Weng [27], 
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Subramanyam and Kumaraswamy [28] and Das et al. [29] developed their models with 
price variations for deteriorating items. Incorporating this situation, we have developed a 
policy with price-dependent demand under profit maximization. The failure and life 
expectancy of many items expressed in terms of Weibull distribution. Therefore we have 
considered three-parameter Weibull distribution deterioration. Here shortages are 
permissible and are completely backordered. 

 
2. Assumptions and Notations 
 
The following assumptions and notations are considered: 

1. The demand rate is dependent on the selling price ''s per unit, which is a linear 
function i.e. ( ) bsasd −= , where 0>b  and bas =< . 

2. Replenishments are instantaneous with a negligible lead-time. 
3. The distribution of the time to deterioration follows a three-parameter Weibull 

distribution and the deteriorated units are not replaced during a given cycle. 
4. The inventory level, replenishment quantity, demand and deterioration are 

continuous functions of time. 
5. The replenishment quantity and period are constant for each cycle. 
6. Units are available for satisfying demand immediately after their replenishment. 
7. The cost of a deteriorated unit is constant and equal to the unit cost ''c . 
8. The demand during the stock-out period is completely satisfied by the next 

replenishment. 
9. T  is the cycle length, Q  is the order quantity per cycle, 1T  is the deterioration 

of inventory cycle when there is positive inventory and ( )1TT −  is the duration of 
inventory cycle when stock-out occur. 

10. ba, are positive constants. s  is the unit selling price, ( )sd  is the demand rate    
        which is a function of s . 
11. 21,, CCc and 3C  is denoted as the unit cost ( )sc < , fixed production cost per 

cycle, inventory holding cost, shortage cost per unit backordered per time-unit. 
All of these cost parameters are positive constant. 

12. ( )tI1  denotes the time-varying inventory level in the cycle segments ( )111 0 Ttt ≤≤ . 
( )t  is the inventory-level in the cycle segment I2 ( )( )122 0 TTtt −≤≤ . 

13. ( )TsT  is the net profit per unit time of inventory system. NP ,,1
*14. ***

1 ,, and , QsTT ( )TsT  are the optimal values of the cycle length, 
inventory, selling price, optimum order rate and net profits respectively. 

NP *,,*
1

 

In this article, the item is assumed to be replenished every T  integer time-units. 
Shortages are completely backordered and satisfied by the next replenishment. The 
behavior of inventory system is depicted in Fig. 1. It is seen that a review period T  is 
divided into two sub-periods where  is the period of the system with on-hand inventory 
and  is the period of the system with shortages. 

1T
( 1TT − )
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Fig. 1. Inventory system for Weibull distribution deteriorating items. 
 

The rate of deterioration-time relationship for the three-parameter Weibull distribution 
is shown in Fig. 2. The figure shows that the three-parameter Weibull distribution is most 
suitable for items with any initial value of the rate of deterioration and for items, which 
start deteriorating only after a certain period of time. 

 

 

 

 

 

 

 

 
Fig. 2. Rate of deterioration-time relationship for 3-parameter Weibull distribution. 
 

3. Model Development 

 A typical behavior of the inventory system in a cycle is depicted in figure-1. At the 
beginning of the cycle, the inventory level arrive with its maximum  units of item at 

. During the interval
maxI

0=t [ ]1,0 T
1

, the inventory is depleted due to the combined effects of 
demand and deterioration. At T , the inventory level is zero and all of the demand during 

 is backlogged. The total number of backlogged items is replaced by the next 
replenishment. The distribution of the time to deterioration of the items follows a three-
( TT − )1
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parameter Weibull distribution. The three-parameter Weibull density function  from 
Philip [2] is given by  

( )tf
( ) ( ) ( )βγαβγαβ −−−−= tettf 1

where  = probability density function ( )tf
α =  scale parameter,  0>α
β = shape parameter,  0>β
=t  time of deterioration,  0>t

γ≥t =γ location parameter,   
The instantaneous rate of deterioration of the non-deteriorated inventory at time t , 

, can be obtained from ( )tZ ( ) ( )
( )tF

tftZ
−

=
1

, where ( )tF  is the cumulative distribution 

function which is equal to 1  for the three parameter Weibull distribution. Thus, 
the instantaneous rate of deterioration of the on-hand inventory is 

( )βγα −−− te
( ) (= αβ ttZ

0

) 1−− βγ

]T,

. The 
probability density function represents the deterioration of items which is shown in figure-
2, which may have a decreasing, constant or increasing rate of deterioration. It is clear 
from figure-2 that the three-parameter Weibull distribution is suitable for items with any 
initial value of the rate of deterioration and for items, which start deteriorating only after a 
certain period. The inventory level of the system at time  over period [  can be 
described by the following equations: 

''t

)()()()(
11

1

1 sdtIt
dt

tdI
−=+θ , 110 Tt ≤≤    (1) 

with the boundary condition ( ) max0 II =  and     

)()(

2

2 sd
dt

tdI
−= , ( )120 TTt −≤≤    (2) 

with the boundary condition ( ) 01 =TI , where ( ) 1
11)( −−= βγαβθ tt  and d . 

Using the value of 
( ) as = bs−

( )1tθ  in equation (1) and (2), the equations becomes 

)()()()(
1

1
1

1

1 sdtIt
dt

tdI
−=−+ −βγαβ , 110 Tt ≤≤   (3) 

with the boundary condition ( ) max0 II =  and    

)()(

2

2 sd
dt

tdI
−= , ( )120 TTt −≤≤    (4) 

with the boundary condition ( ) 01 =TI . By using the conditions ( ) max0 II =  and , 
the solutions of equation (3) and (4) are respectively given by,  

( )1TI 0=

 ( )
])(exp[

])(exp[)(
1

0
max

1 β

β

γα

γα

−

−−

=
∫

t

dttsdI

tI

t

, 110 Tt ≤≤  (5) 
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where  and     dttsdI
T

])(exp[)(
1

0
max ∫ −= βγα

( ) 22 )( tsdtI −= , ( )120 TTt −≤≤                                                           (6) 

The loss of stock due to deterioration is given by,  

 ( ) 1max1 )( TsdITD −=   (7) 

Therefore, the total average cost per unit time, K  of the system consist of the 
deterioration cost, the replenishment cost and the backordering cost, which is given by  

( ) ( ) 2
0

2
3

1
211

1

)( dttsd
T
CTI

T
C

T
C

T
TcDK

TT

T ∫
−

+++=   (8) 

Substituting the values of ( )1TD  and  in equation (8), we get ( )1TIT

    

( ) ( )[ ] ( )

( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( ){ }
( )

2
)(

)2()1(

)1()2)(1(

)1(2
)(

)1(
)(

2
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22
1

11
1

1
11

1122
1

1
11

2
12111

1

TTsd
T
C
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TTTT

TTTsd
T
C

T
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T
scdK

−
+

⎥
⎦
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−−−−

+
+
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⎪
⎬
⎫
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⎨
⎧

+
−−−

−−−−
++

−

+
−

+
⎢
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⎣
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++−−−

+
=

++++
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++

+
++

ββββ

ββ
ββ

β
ββ

γγ
β

α
γγ

β
αγ

β
γγαγγ

ββ
α

β
γα

γγ
β
α

                       (9) 

When there is no shortage, then TT =1  and the constant demand reduces to . dsd =)(

Putting these values in Eq. (9), we get  

 

( ) ( ) ( ){ }[ ]
( )
( ) ( )( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ) ( ){ }⎥
⎦

⎤
−−−
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+

−−−
+

−−−−
+

−

−−−
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+
−
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+
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++
+
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ββ
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ββ
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β

αγ

γγ
β

αγγ
β

α

γγ
ββ

α
β
γα

γγ
β
α

11

1122

22
12

2

111

1

12

2112

1

T

TTTT

TTTTd
T
C

T
CT

T
cdK

 (10)  

For the constant demand dsd =)(  and substituting 1=β , Eq. (9) becomes,  
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( ) ( ){ }[ ]
( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( )

T
TTdC

TTTTT

TTTTd
T
C

T
CT

T
cdK

2

223

622

2

2
13

22
11

22
11

33
1

33
1

2
1

2
12

122
1

−
+
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⎤−−−+−−−−−−−−

−−−
⎢
⎢
⎣

⎡
−

−
++

+−−−=

γγαγγγαγγα

γγ
αγα

γγα

  (11) 

For the condition with no shortage TT =1  and  substituting 1=β , Eq. (9) becomes,   

( ) ( )[ ] ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }⎥⎦
⎤−−−−−−−+−−−−

−−−−
−

+
⎢
⎢
⎣

⎡
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33
1

22
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22
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33
1
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12122

1
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622
)(

2
)(

γγαγγαγγγα
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TTTTT

TTTTsd
T
C

T
CT

T
scdK

      (12) 

The net profit per unit time, ( )TsTNP ,,1  is determined by the deduction of the revenue 
per unit time )()( sdcs −  and the average cost per unit time K , which is given by,  

Net profit = Revenue - Average cost 

( ) ( )TsTKsdcsTsTNP ,,)()(,, 11 −−=                                                                       (13) 

As a result, 

( ) ( ) ( ) ( ) ( ) ( ){ }
( )
( ) ( )( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ) ( ){ } ( ) ( )
⎥
⎥
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−−−
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−

+

⎢
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+
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1211

2
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1
)(,,

2
1322

1
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1

1
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1

1
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2
12111

11

TTsd
T
CTT

TTTTTT

Tsd
T
C

T
CT

T
sdcsdcsTsTNP

ββββ

ββββ
β

ββ

γγ
β

αγγ
β

αγ

γγ
β

αγγ
ββ

α
β
γα

γγ
β

α

   (14)  

For maximizing the net profit ; it can be formulated by the following cases: ( TsTNP ,,1 )

Case I: Optimization of  and 1T s  with T  given 

Our objective is to determine  and 1T s  which maximize the net profit  with a 
given

NP
T . Thus the optimum value of T and1 s  with T prescribed is the solution of the 

equation 

0
1
=

∂
∂

T
NP  and 0=

∂
∂

s
NP                                                                          (15) 
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Thus Eq. (15) yields, 

( ) ( )[ ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) 0
1

1

13

1
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1

11121
1

=
⎥
⎥
⎦

⎤
−−

⎪⎭

⎪
⎬
⎫

+
−

+−−−+

−
⎪⎩

⎪
⎨
⎧

−
+
−

−−++−−=
∂
∂

+
+

+

TTCTT

TTTTTCTc
T
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T
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ββ

              (16)  

and 

( ) ( ) ( ) ( )
( ) ( ) ( ){ } ( )
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⎦

⎤
⎥
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+
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−
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−
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β
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β
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TTTT

TTTTC

TTCTc
T

sdsdcssd
s

NP

  (17) 

Eqs. (16) and (17) are two simultaneous equations for  and 1T s  provided that they 
satisfy the sufficient conditions 

 02
1

2

<
∂
∂

T
NP , 02

2

<
∂
∂

s
NP    (18) 

 and  

 0
2

1

2

2

2

2
1

2

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

sT
NP

s
NP

T
NP    (19) 

The above conditions are verified since for a linear price function of demand 
bsdbsasd −=′−= )(,)(  and 0)( =′′ sd . For demand, , 0)( >sd ∞<T ; Eq. (16) yields 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) 0
1

1

13

1
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11121

=
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β
ββ

β
β

ββ

  (20) 

Hence it can be predicted that   0
1

2
=

∂∂
∂

sT
NP . Therefore, Eqs. (18) and (19) are satisfied 

for the optimal values of and . With the optimal values of and , the net profit 
can be evaluated from equation (9); and the optimal replenishment lot size is given by  

*
1T *s *

1T *s

( ) ( )TsdTDQ **
1

* +=    (21) 
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Case II: Optimization of  and 1T s  with T  as a decision variable 

If T is not prescribed, then for a givenT ; the optimal values of and , can be found 

from equation (16) and (17). 

*
1T *s

( )TsTNP ,,1  and can be evaluated as in Case-I. Continue 
the process unless and until get an optimal solution using other values of T . The 
concavity of the net profit is shown in Appendix-A. 

*Q

4.  Numerical Example 

The parameters are as follows:  
Demand rate, ssd 5.025)( −=  units/day,  
Item cost 00.8$=c /unit,  
Setup cost 00.20$1 =c /order,  
Holding cost 50.0$2 =c /unit/day in stock,  
Shortage cost 00.3$3 =c /unit/day back-ordered, and the items deterioration patterns a     
Weibull distribution with 0.1,1.0,5.0,15.0,05.0,002.0=α  and 0.3,0.2 == γβ . 

 
Eqs. (18) and (19) can only be solved numerically with the help of some computer 

algorithm for a given set of parameter values. For a givenT , the optimal values of  
and , can be simultaneously found from Eqs. (18) and (19) and the values of  

1T
s
( )TsNP ,, ∗∗

T
T1  and can be evaluated as in case-I. Repeat the process for other values of 

 until the best T  with its associated  and 

∗Q

1T s  can be found. 
 

Table 1. Optimum solutions obtained using case-II. 
 

Decay  
rate 
α  

Cycle length 
T (days) 

Positive 
inventory 

1T (days) 

Selling price s  
($) 

Order rate 
TQ /  

Net profit 
NP  

0.002 

4 
5 
6 
7 
8 
9* 

3.43004 
4.27867 
5.11938 
5.95271 
6.77916 
7.59921* 

29.4495 
29.5529 
29.6601 
29.7704 
29.8835 
29.9987* 

10.2754 
10.2264 
10.1807 
10.1396 
10.1035 
10.0727* 

14.238 
15.3053 
16.7589 
18.4427 
20.2726 
22.1979* 

0.05 

4 
5 
6 
7 
8 
9* 

3.46119 
4.15393 
4.7570 
5.29985 
5.79871 
6.26364* 

29.9521 
29.9631 
30.0528 
30.2006 
30.3925 
30.6188* 

10.028 
10.0698 
10.1239 
10.1864 
10.2515 
10.3144* 

24.0877 
23.2984 
24.3342 
26.6282 
29.8031 
33.5972* 

0.15 4* 0.364148* 32.0701* 6.91274* 60.047* 
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                    Table 1 (Continued) 

0.5 

4 
5 
6 
7 
8 
9* 

1.77438 
1.50734 
1.29219 
1.10717 
0.942471 
0.792679* 

35.3277 
34.9295 
34.9716 
35.2569 
35.6894 
36.2171* 

6.77339 
6.69992 
6.47452 
6.18128 
5.85685 
5.51895* 

97.8422 
93.3608 
93.0776 
95.1028 
98.2286 
101.694* 

 
0.1 
 

4 
5 
6 
7 
8 
9* 

-- 
-- 
-- 
-- 
-- 
-- 

32.0491 
32.9847 
33.9614 
34.9463 
35.9275 
36.901* 

5.38419 
4.3572 
3.60054 
3.00855 
2.52781 
2.12762* 

59.7334 
71.8006 
82.9076 
92.3704 
99.9877 
105.717* 

1 

4 
5* 
6 
7 
8 
9 

2.0676 
1.90381* 
1.76527 
1.64308 
1.5326 
1.43102 

40.7091 
39.1307* 
38.3655 
38.0607 
38.0408 
38.2092 

4.33165 
4.95741* 
5.20889 
5.25943 
5.19236 
5.05206 

113.788 
114.113* 
112.297 
111.035 
110.621 
110.806 

                Star (*) indicates optimal solutions. Hyphen (--) indicates infeasible values. 
 

It is shown from Table 1 that the net profit increases as the deterioration increases 
whereas the selling price varies slightly. The reason of raise of optimal solution is due to 
the no shortage constraint in our present model. 

5.  Conclusion 

We developed an instantaneous replenishment policy for Weibull deteriorating items with 
price-dependent demand. Shortages are allowed and completely backordered in the 
present model. The models with price-dependent demand are surprisingly very few while 
there is abundance of time-varying demand in inventory models. The fact is that the 
selling price of an item can affect significantly with the demand of an item. Selling price 
is the main criterion of the consumer when he/she goes to the market to buy a particular 
item. The principal feature of the model is the deterministic demand rate which is 
assumed as a function of selling price. Here, the inventory cycle (or holding time) and 
selling price optimize the net profit which are simultaneously optimized. Aggarwal and 
Jaggi [30] developed their model in this approach for decaying inventory. Here a simple 
heuristic is implemented to derive the best replenishment time interval for a maximum net 
profit. From the Table-1, it is quite remarkable to note that the selling price of an item 
slightly changes or remains quite stable as the deterioration rate changes. The three-
parameter Weibull distribution deterioration considered here is suitable in optimizing the 
model as well as control the inventory models. In many realistic situations, stock out is 
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unavoidable due to various uncertainties. There are many situations, where the profit of 
the stored item is higher than its backordered cost. Hence, consideration of shortages is 
economically desirable in these cases. 

In reality, the retailer’s lot size is affected by the demand of the product and the 
demand is dependent on the price of the product. Therefore, the problems of determining 
the retail price and lot-size are inter-dependent. For reality, the vendor must have some 
idea about the buyer’s behavior such as response to shortages and price. It should be noted 
that in order to maximize the profit, a vendor can either increase the price or shorten the 
replenishment cycle or shorten the inventory holding time to counteract a greater loss due 
to a higher deterioration rate. The selling rate must be a decreasing function with respect 
to ‘ s ’ as the lower price causes the higher selling rate and vice-versa. In the numerical 
example, the selling rate is taken as the linear function of ‘ s ’. The model shows how the 
deterioration patterns influence the scheduling policy and price.  
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Using (A3), (A4)and (A5) in (A6); we have  
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Also considering the relation (A3), the condition (A7) is verified. 
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