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Abstract 

 

We have investigated stability of a ferrofluid in microgravity environment. We consider 

the effect of the spin viscosity, vortex viscosity, and magnetization relaxation. The 

eigenvalue problem is solved by employing the Chebyshev pseudospectral method and 

the results are discussed for all three boundary conditions: free-free, rigid-free and rigid-

rigid. In the microgravity environment, the ferrofluid is more resilient to convection and, 

in general, for all boundary conditions requires higher temperature gradient for the 

threshold of the convection. It is found that a ferrofluid in microgravity environment is 

more stable, not only as compared to the case when gravity is present, but also in the 

pure viscous case. 
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1. Introduction 

 

A ferrofluid is a liquid that becomes strongly magnetized in the presence of a magnetic 

field. A liquid that consists of a colloidal suspension of ferromagnetic particles and 

that becomes strongly polarized in the presence of a magnetic field. Ferrofluids are 

colloidal liquids made of nanoscale ferromagnetic particles suspended in a carrier 

fluid. Each tiny particle is thoroughly coated with a surfactant to inhibit clumping. 

Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, 

forming a separate clump of magnetic dust when exposed to strong magnetic fields. 

Ferrofluids do not retain the polarization once the magnetic field is removed. Several 

applications of ferrofluids includ their use in liquid seals in rotary shafts for vacuum 

systems and in hard disk drives of personal computers. Ferrofluids are also used in 

                                                 
*
 Corresponding author: hosne_jasmine@hotmail.com  

 

Available Online 

J. Sci. Res. 8 (3), 309-319 (2016) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR 
 

Publications 

 

http://dx.doi.org/10.3329/jsr.v8i3.27438
mailto:hosne_jasmine@hotmail.com


310 Rayleigh-Bénard Convection in Ferrofluids 

 

cooling and damping of loud speakers, in shock absorbers and in jet printing of 

magnetic inks [1]. Several physical phenomena, which were not explained hitherto, 

were explained by this theory. This included the increase of the viscosity with an 

increase in the d.c. magnetic field [2] and the decrease of viscosity (sometimes termed 

as negative viscosity) with the increase of high frequency a.c. magnetic field [3]. The 

experiments in both these two later papers were limited to slow laminar flow. This 

theory, however, is based upon a single particle calculation and thus could only be 

applied to dilute ferrofluids. 

The general development of more sophisticated ferrofluid equations, which not 

only employs the concepts of internal rotation, magnetization relaxation, etc. but also 

introduce the role of asymmetric stress tensor, have been proposed by Felderhof and  

Kroh [4]. In some sense all these theories are generalizations of the ideas introduced 

earlier by Dahler and Scriven [5] and Condiff and Dahler [6] in the studies of 

structured continua and polarizable molecular fluids, respectively. Shizawa and 

Tanahashi [7] combined the effects of electrically conducting magnetic fluids with 

micropolar theory. Felderhof and Kroh [4], following the framework laid out in 

deGroot and Mazur [8], employed irreversible thermodynamics to arrive at the general 

set of equations. More recently, Rosensweig [9] has developed the governing 

equations derived on the basis of dynamic balance relationships and thermodynamic 

considerations. In this paper the author also demonstrates how the equations proposed 

in the earlier studies by Neuringer and Rosensweig [10] are related to the equations 

developed by him. We point out that there is quite a bit of similarity between the final 

form of equations proposed by Felderhof and Kroh [4]. In the present paper we have 

employed the general equations suggested by Stile et al. [11]. 

One of the interesting problems often studied in all the fluid dynamic theories is 

the thermal instability problem in a fluid layer heated from below, the so called 

Rayleigh-Bénard convection problem. Chandrasekhar [12] has given an excellent 

account of the linear stability of this problem in viscous fluids. In the theory of 

ferrofluid by Neuringer and Rosensweig [10], the above problem has been studied 

extensively, as discussed below, by a number of writers. Finlayson [13] was the first 

author to study convective instability problem of a ferrofluid layer heated from below 

in the presence of a uniform magnetic field. He discussed the linear stability problem 

for both shear free and rigid-rigid boundaries and predicted that convection could also 

be driven by the magnetic forces alone, in the absence of gravity. Gotoh and Yamada 

[14] studied the same problem by assuming the magnetic fluid is confined between 

two magnetic pole pieces. Stiles and Kagan [15] discussed the convective instability in 

a strong magnetic field while Blennerhasset et al. [16] and Stiles et al. [11] discussed 

the heat transfer aspects through strongly and weakly magnetized ferrofluids 

respectively. Sunil and Mahajan [17] employed the energy method to study the 

nonlinear stability of this problem. The thermal convection problem in a rotating layer 

of a ferrofluid has been studied, respectively, by Gupta et al. [18], 

Venkatasubramanian et al. [19]. The last two references also have discussed the 
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weakly nonlinear analysis. Some other aspects of the thermal convection problem in 

the above model have also been considered by Pérez et al. [20]. Finally, we point out 

that some interesting aspects of the convection problem in an oscillatory magnetic 

field have also been studied by Kaloni and Lou [21] and Matura and Lücke [22]. There 

have been some experimental studies carried out by Schwab et al. [23] related to 

thermal convection in ferrofluids. 

This section two important remarks are in order. The first is concerned about 

considering ferrofluids as a binary mixture. Two representative studies in this direction 

are those of Shliomis [24]. Both these studies have been carried out using the constant 

viscosity model [10]. Both studies relate the pronounced Sorret effect and the 

magnetophoresis effects to be the cause of considering ferrofluid as a binary mixture. 

Shliomis [24] however, stated that because of considerable smallness of concentration 

diffusion coefficient, as compared to the thermal diffusion coefficient, the influence of 

concentration gradient is possible only when the temperature difference is allowed to 

increase very slowly so that mass diffusion develops and remains undisturbed. If the 

temperature difference increases much faster than the limit imposed by concentration 

diffusion, the ferrofluid will behave as a single component fluid. Ghofrani et al. [25] 

investigated experimentally forced convection heat transfer of an aqueous ferrofluid 

flow passing through a circular copper tube in the presence of an alternating magnetic 

field. The effects of magnetic field, volume concentration, and Reynolds number on 

the convective heat transfer coefficient were widely examined leading to the 

determination of optimum conditions. Increase in the alternating magnetic field 

frequency and the volume fraction led to better heat transfer enhancement. The effect 

of the magnetic field in low Reynolds numbers was higher, and a maximum of 27.6% 

enhancement in the convection heat transfer was observed. Radha et al. [26] reported 

the experimental observation of diffraction patterns in a ferrofluid under the effect of 

magnetic field and gravity. The diffraction pattern showed a variation at different 

depths of the sample in the absence of the magnetic field and when the magnetic field 

is applied. The patterns also exhibited a change in the shape and size with variation of 

the external field. This effect arises due to thermally induced self-diffraction under the 

influence of gravity and external magnetic field. Recently Jasmine [27] investigated 

the linear thermoconvective stability of ferrofluid in presence of uniform magnetic 

field with gravity for rigid-rigid boundary condition case only. 

In this paper we have used boundary conditions: free-free, rigid-free and rigid-

rigid, and the fluid selected is Ester I base ferrofluid. The solution, in each case, has 

been obtained numerically. In general it is noted that the pattern of values remains 

similar to be obtained in the case of a viscous fluid. The critical values are the lowest 

for the free-free boundary condition and the highest for the rigid-rigid case. Moreover, 

the critical values of Rac and Ram,c are field-dependent. It is of some interest to 

determine the stability character in an environment when gravity effects can be 

neglected, i.e. when effects of magnetic field alone are present (e.g. international apace 

station). In the case when magnetic mechanism alone is considered to induce 
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convection, the values of Ramf,c, the critical magnetic Rayleigh number (in the 

microgravity environment), for three boundary conditions, in the case of Ester base I 

ferrofluid are discussed. 

 

2. Governing Equations 

 

We consider the three dimensional flow of an incompressible ferrofluid. The 

continuity and momentum equations are 

 

                                                                                                                           (1) 

  
  

  
     (   )       (   )    (   )     ̂                               (2)                             

 

where u = (u, v, w) is the velocity field, with radial, tangential and vertical components 

u, v and w, respectively.  
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generalized pressure, t is time, g the gravitational body force, µ is the viscosity, ξ is the 

vortex viscosity, H is the magnetic field, μ0 
 is the magnetic permeability (in free space 
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The temperature, angular momentum, and magnetization relaxation equations are 
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These are similar to the equations employed in polar fluid theories [6] but are here 

augmented by the inclusion of the magnetic field. Equation (5) is the simpler form of 

the magnetization relaxation equation proposed by Shliomis and Morozov [3]. Apart 

from some minor details, the formal structure of the magnetization equation [3,4] is 

nearly similar even though these have been derived differently. Here  λ, η are spin 

viscosities, S = IΩ, where I is the sum of moments of inertia of the sphere per unit 

volume  and Ω is the average velocity of their ordered rotation, CV,H is the heat 

capacity at constant volume, KT  is the thermal conductivity, T is the temperature, H is 

the magnetic field, M is the magnetization,   
 

 
     is the equilibrium 

magnetization, B is the magnetic flux density and τ is the Brownian relaxation time.

  

Maxwell’s equations in the magneto static limit are 

0 B ,  H 0 ,  0  B H M                        (6) 

We also assume Boussinesq approximation for the density variation and write 

 )(10 aTT               (7) 

where α is the thermal expansion coefficient, ρ0 is the mass density and Ta is the 

average temperature. 
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We assume that the equilibrium magnetization Meq is given by Langevin formula 

   eq s L eqM L M H,T
H H

  
H H

M ,    L L
L

1
L coth   


, 0

L
B

mH

k T


  ,        (8) 

Where MS the saturation magnetization, m  is the magnetic moment of one particle and 

kB is the Boltzmann constant. In the limit of low magnetic field (αL < 1), we define the 

initial susceptibility as 
2

0 s 0

B a B a

mM m N

3k T 3k T

 
                 (9) 

where N is the number of magnetic dipole per unit volume and 
23 1

Bk 1.38 10 J / K   . 

We consider two horizontal plates of infinite extent which contain the ferrofluid 

and which are separated by a vertical distance d apart. The temperatures of the upper 

and lower plates are maintained at T1  and T0 respectively. A uniform magnetic field is 

applied normal to the plates. The boundary conditions are: 

 

u = 0, Ω = 0 on the rigid wall T = T0 at d
z

2
  , T = T1 at d

z
2

 ;  a 0 1
1

T T T
2

     (10) 

The magnetic boundary conditions are that the tangential component of the 

magnetic field and normal component of magnetic induction are continuous across the 

boundary. 

In the quiescent state, following Finlayson [13], we express 

   eq a a 1 aM M H H K T T      

where   (
  

  
)
      

 and    (
  

  
)
     

are susceptibility and pyromagnetic 

coefficients, respectively. 

 

The quiescent state solution of the basic equations  is 

    ,     , b aT T z  , 0 1T T

d


 

, 1
b a

K z
H

1

 
  

  
H k , 1

b a

K z
M

1

 
  

  
M k

 (11)                                                                                                       

To study linear stability of the above solution we now perturb the system as 

       ,        , bT T   , 
b  H H H , 

b  M M M , 
bP P P      (12)  

This gives the following set of linearized perturbation equations (dropping prime) 
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t T t z 1 T1 T

            
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       

   (17) 

2 0   M              (18) 

Where  x y zM ,M ,MM ,  x y zH ,H ,HH ,    (           ) and a
2

a

M

H
  . We 

have also used  H  since  H 0 . 

On introducing the following non-dimensional quantities and non-dimensional 

parameters 
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, 
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Where κ is the fluid thermal diffusivity. The relevant equations, after dropping the 

asterisks, take the form 
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We further non-dimensionalize the magnetic potential  and the magnetization 

vector Mz as 
4M

1

 
   

  

, 4
z z

2

M
M M

1

    
   

, respectively. 

On taking curl curl of equation (21) and curl of equation (22), the vertical 

component of resulting equations become, respectively, as 

 2 4 2 2 2 2m m
1 1 1 1 z 1

Ra Ra1
w 1 w Ra M 2

Pr t 1 z 1

 
             

   
     (26) 

2 2 21 2
1 1 1 1 m 1

4

I z
2 w 4 Ra

Pr t M 1

 
            

   
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4

M1 z
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M 1 z

   
     

    

     (27) 

where    2 2 2 2 2
1 / x / y       . 

Taking the divergence of magnetization equation (23) and using equation (25), we 

obtain 

   
2

2 2
2 2 1 2

4 2

w 1 z 1
1 1 (1 )

t z M zz

       
             

         

     (28) 

Taking vertical component of equation (23), we have 

 

z
z

M 1
w M (1 )

t z

  
          

          (29) 

Equations (24), (26)-(29) are five equations for five variables W,  ,  , Mz and θ. 

In these equations, Pr is the Prandtl number, 1 is non-dimensionalized vortex 

viscosity, Ra is the viscous Rayleigh number,  is the susceptibility, 1 is the non-

dimensionalized spin viscosity,  is the non-dimensionalized magnetic relaxation and 

M4=d/Ta. Thus, in comparison to the problem in quasistationary theory, we now have 

three more parameters: 1, 1 and  which influence the stability problem. We note that 

if we set 1 = 0 in (26) and  = 0 in (28) and rearrange the terms we recover the 

equations studied by Finlayson [13]. There are, however, no counterparts to equation 

(27), the angular momentum equation, and the magnetization equation (29).  

In order to match the domain of Chebyshev pseudospectral-QZ method, we reset 

the present domain from 1 1
,

2 2

 
 
 

 to  1,1  with coordinate transformation from z to 2z 

in equations (24), (26)-(29). 

We now perform the standard normal mode analysis and look for the solution of 

variables zw, , ,M ,    in the form 

 

[          ]  [ ( )  ( )  ( )   ( )  ( )]   [    (       )]           (30)        

where ω represents the scale frequency of the wave propagating in the disturbance 

wave direction. 
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On substituting (30) into equation (24), (26)-(29) in the new domain, we obtain 
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where      
    

  , 

boundary conditions 

w 0, 0, 0,    
 

at z 1  ; 
zM 2D k 0,   

 

at z 1  ; 
zM 2D k 0,   

 

at 

z 1  ; 

and 

Dw 0,
 

at z 1  , on rigid-rigid surface 

Dw 0,

 

at z 1  ,  2D w 0,

 

at z 1  , on rigid-free surface 
2D w 0,

 

at z 1  , on free-free surface                                                                     (36)

  

3. Numerical Results and Conclusion 

 
Several methods are available for solving the eigenvalue problem (31)-(35), together 

with the boundary conditions (36). In our study we solve this system of equation by 

using the  Chebyshev pseudospectral method.  Since most of the calculations here are 

based upon the Ester I base fluid, we have adopted values of some physical quantities 

Ta = 298 K, Ms =15900 A/m, 0 =1150 kg/m
3
,  = 0.014kg/(m.s), KT= 0.31kg.m/(K.s

3
), 

 = 8.110
−4

,  = 0.4, 2  = 0.35,  Pr 146.2 , 
7 210 m / sec   . For the remaining 

parameters we have adopted the values discussed and used by Schumacher et al. [25], 

as 17 2I 7.5 10 m   and 15 12 10 kg.m.s   .      
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Fig. 1. Plot of  Rac with L  for Ester 1 base fluid and layer width d = 1  mm. 

Following earlier writers  Sunil and  Mahajan  [17], we have set M2 = 0  in our 

calculations. In the following, Rac represents the critical Rayleigh number, Ram,c is the 

critical magnetic Rayleigh number and Ramf,c  is the critical magnetic Rayleigh number 

in the gravity free.  

We remark that we have carried out calculations for Rac and Ram,c for different 

values of d, for the Ester I base ferrofluid, but noticed that significant variation 

occurred only for d = 1 mm. Our all subsequent calculation in this section are thus for 

d = 1 mm. Moreover, the values considered for ξ1  and τ are dimensionless values 

throughout.  

In order to have some idea about the values of the critical parameters in different 

boundary conditions at the two plates, we have carried out calculations and have 

plotted them in Figs. 1-3. The three commonly used boundary condition are : free-free, 

rigid-free and rigid-rigid, and the fluid selected is Ester I base ferrofluid. The solution, 

in each case, has been obtained numerically. In general it is noted from the Figures that 

the pattern of values remains similar to be obtained in the case of a viscous fluid. The 

critical values are the lowest for the free-free boundary condition and the highest for 

the rigid-rigid case. Moreover, the critical values of Rac and Ram,c are field-dependent. 

                                                    

 

  Fig. 2. Plot of Ram,c with L  for Ester 1 base fluid and layer width D = 1 mm. 

 

 
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It is of some interest to determine the stability character in an environment when 

gravity effects can be neglected, i.e. when effects of magnetic field alone are present 

(e.g. international apace station). In the case when magnetic mechanism alone is 

considered to induce convection, the values of Ramf,c, the critical magnetic Rayleigh 

number (in the microgravity environment), for three boundary conditions,  in the case 

of I base ferrofluid are displayed in Fig. 3.  Here again, at lower values of L the Ramf,c  

values steadily increase and then take nearly constant values. These Ramf,c values are 

almost identical, for all the three boundary conditions, at lower values of L. However, 

as L is increased, it seems that the magnetization starts getting saturated and some 

structural changes begin. Ramf,c now takes on different values for the three boundary 

conditions and, as before, the convection starts at the lowest value of Ramf,c for free-

free boundary condition. As compared to the pure viscous at L = 10, the values are 

1598.9, 2085.1 and 2570.6, respectively, for the three boundary conditions. For higher 

values of L, a slight change in Ramf,c only occurs in the case of rigid-rigid boundary 

condition.  

 

 

 

Fig. 3. Plot of critical Ram,f,c  (microgravity environment) with L 
 
for different boundary 

conditions for Ester 1 base fluid and layer width d = 1 mm. 

 
We note that corresponding values for a viscous fluid are: 657.5, 1101 and 

1707.76, respectively, for the three boundary conditions. Thus it is clear that a 

ferrofluid in microgravity environment is more stable, not only as compared to the 

case when gravity present, but also to the pure viscous case. Finally, we also have 

noted that, as compared to the viscous fluid case, a higher temperature gradient is 

required for the threshold of convection in a microgravity environment. 
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