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Abstract 

 

We have carried out a theoretical analysis of the linear thermoconvective stability of a 

ferrofluid, which is confined between two horizontal plates maintained at different 

constant temperatures and which is subject to an external uniform magnetic field in the 

vertical direction. The effects of the spin viscosity, vortex viscosity and magnetization 

relaxation are considered and discussed. The eigenvalue problem is solved by 

employing the Chebyshev pseudospectral method. It is found that the presence of 

magnetic field complements the buoyancy force in destabilizing the fluid at lower 

values of the magnetic field only and when the applied field is increased, the effect is 

reversed and the flow becomes more stable. 
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1. Introduction 

 

Ferrofluids or magnetic fluids are stable colloidal suspensions of fine ferromagnetic 

mono domain nanoparticles in a non-conducting carrier fluid. The particles are coated 

with a surfactant to avoid agglomeration and coagulation. Brownian motion, however, 

keeps the nanoparticles from settling under gravity. In the absence of applied field, the 

particles in a ferrofluid are randomly oriented and the fluid has no net magnetization. 

The fluid behaves similar to the carrier fluid. However, when placed in a strong 

magnetic field, these fluids flow toward regions of magnetic field and preserve their 

liquid character as long as the magnetic field is present. Recent investigations are also 

finding the use of ferrofluids in biomedical applications, such as drug targeting, as 

radio isotopes targeted by magnetic guidance and as a contrast agent for magnetic 

resonance imaging scans [1]. We remark that these fluids are different from the fluids 
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which are dispersions of micron sized magnetic particles, and in which the main 

interest of study appears to be related with non-Newtonian properties, very much like 

in polymeric fluids. 

The continuum description of ferrofluids was initiated by Neuringer and 

Rosensweig [2]. This theory found several applications as described in the references 

cited above but assumed the collinearity of the magnetization with the magnetic field. 

This collinearity has been relaxed in several subsequent publications. First Shliomis 

[3] extended the theory by introducing the concepts of internal rotation of the particles 

and the magnetization relaxation equation. The general development of more 

sophisticated ferrofluid equations, which not only employs the concepts of internal 

rotation, magnetization relaxation, etc. but also introduces the role of asymmetric 

stress tensor. In some sense all these theories are generalizations of the ideas 

introduced earlier by Dahler and Scriven [4] and Condiff and Dahler [5] in the studies 

of structured continua and polarizable molecular fluids, respectively. Rosensweig [6] 

combined the effects of electrically conducting magnetic fluids with micropolar 

theory. Felderhof and Kroh [7], following the framework laid out in deGroot and 

Mazur [8], employed irreversible thermodynamics to arrive at the general set of 

equations. Rosensweig [9] has developed the governing equations derived on the basis 

of dynamic balance relationships and thermodynamic considerations. In this paper the 

author also demonstrates how the equations proposed in the earlier studies, Neuringer 

and Rosensweig [2] are related to the equations developed by him. We point out that 

there is quite a bit of similarity between the final form of equations proposed in 

Felderhof and Kroh [7] and Rosensweig [9]. In the present paper we have employed 

the general equations suggested in Rosensweig [6,10]. Some other aspects of the 

thermal convection problem in the above model have also been considered by Pérez et 

al. [11]. Ghofrani  et al.  [12] investigated experimentally on forced convection heat 

transfer of an aqueous ferrofluid flow passing through a circular copper tube in the 

presence of an alternating magnetic field. The effects of magnetic field, volume 

concentration, and Reynolds number on the convective heat transfer coefficient were 

widely examined leading to the determination of optimum conditions. Increase in the 

alternating magnetic field frequency and the volume fraction led to better heat transfer 

enhancement. The effect of the magnetic field in low Reynolds numbers was higher, 

and a maximum of 27.6% enhancement in the convection heat transfer was observed. 

Radha et al. [13] reported  the experimental observation of diffraction patterns in a 

ferrofluid  under the effect of magnetic field and gravity. The diffraction pattern 

showed a variation at different depths of the sample in the absence of the magnetic 

field and when the magnetic field is applied. The patterns also exhibited a change in 

the shape and size with variation of the external field. This effect arises due to 

thermally induced self-diffraction under the influence of gravity and external magnetic 

field. 

To our knowledge, an attempt to study the convection problem in a vortex 

viscosity model using the equations proposed by Shliomis [3] was first made by 
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Kaloni and Lou [14]. The work in this paper, which is applicable to dilute magnetic 

fluids, essentially discussed the convective stability results and compared them with 

the results obtained in Finlayson [15].  In the present paper we employ a general set of 

equations Rosensweig [6,10], which include vortex viscosity, ξ, magnetic relaxation, τ, 

and spin viscosities, λ, η, to discuss the Rayleigh-Bénard problem, thus generalizing 

the results of Kaloni and Lou [14]. Our aim is to find the effect of the consideration 

and variation of these new quantities in the governing equations and also to compare 

our results, where possible, with the results of previous authors. It is to be noted that 

Zhan and Wainman [16] have employed these and the related equations in their studies 

leading to interesting results. We employ Chebyshev pseudospectral method to solve 

the eigenvalue problem and carry out calculations for Ester I base ferrofluids. Our 

calculations reveal that at sufficiently low values of αL, the Langevin parameter, the 

effect of consideration of ξ, τ, λ, η in the stability analysis is to accelerate the 

destabilization. At moderate to higher values of αL, this effect is reversed and as αL  

increases the flow becomes more stable. In fact, at considerably higher values of αL, 
the Rayleigh number takes on values which are much higher than those for a viscous 

fluid. Thus the effect of applied field is initially destabilizing but soon changes to 

stabilizing. Moreover, we find that the effect of increasing the vortex viscosity is to 

stabilize the flow while increasing magnetization relaxation time leads to 

destabilization of the flow. The effect of the spin viscosity when taken into account did 

not, however, show any change in the convection problem.  In the case of gravity free 

environment, it is noted that the critical magnetic Rayleigh number, Ramf,c, steadily 

increases from its lowest value at αL = 0 to a value higher than when gravity is present, 

and then remains nearly constant, even at very high magnetic field.  

The work presented is organized as follows. Section 2 discusses the general 

governing equations and then specialize these to the problem considered. The section 3 

presents the numerical results and their discussion.  

 

2. Governing Equations 

 

The equations governing the flow of an incompressible ferrofluid 

 

0 q ,                        (1) 

     2
0 0

D ˆP 2 g
Dt

             
q

q M H ω k ,                               (2)

 

       2
0 0

D
I 2 2

Dt
              

ω
ω ω q ω M H                           (3) 

 eq

D 1

Dt
   



M
ω M M M ,                              (4) 

2
0 V,H 0 0 T

V,H V,H

DT D
C T K T

T Dt T Dt

     
          

      

M M H
H .                        (5) 
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The first three equations are the equations of mass balance, linear momentum 

and angular momentum, respectively. These are similar to the equations employed in 

polar fluid theories but are here augmented by the inclusion of the magnetic field. 

Equation (4) is the simpler form of the magnetization relaxation equation proposed by 

Shliomis [3]. Apart from some minor details, the formal structure of the magnetization 

equation in Shliomis [3], and  Felderhof and  Kroh [7] is nearly similar even though 

these have been derived differently.  

Here q is the velocity, D

Dt t


  


q , 0  is the mass density, 2
0

1
P p H

2
    is 

the generalized pressure, ω is the average spin velocity of the colloidal particles, μ  is 

the viscosity of the carrier fluid, ξ
 
is the vortex viscosity; and λ, η  are spin viscosities, 

I is the average moment of inertia of the ferroparticle, CV,H  is the heat capacity at 

constant volume, kT is the thermal conductivity, T is the temperature, H is the magnetic 

field, M is the magnetization, Meq
 
is the equilibrium magnetization, μ0 is the magnetic 

permeability (in free space 7
0 4 10 H / m   ), B is the magnetic flux density and τ is 

the Brownian relaxation time.  

Maxwell’s equations in the magneto static limit are 

0 B ,    H 0 ,    0  B H M .         (6) 

We also assume Boussinesq approximation for the density variation and write 

 0 ag g 1 T T       
,           (7) 

where α is the thermal expansion coefficient and Ta is the average temperature. 

We assume that the equilibrium magnetization Meq
 
is given by Langevin formula 

   eq s L eqM L M H,T
H H

  
H H

M ,    L L
L

1
L coth   


, 0

L
B

mH

k T


  ,     (8) 

where MS is the saturation magnetization, m  the magnetic moment of one particle and 

kB  the Boltzmann constant. In the limit of low magnetic field )1( L , we define the 

initial susceptibility as 

 
2

0 s 0

B a B a

mM m N

3k T 3k T

 
   ,           (9) 

 

where N is the number of magnetic dipole per unit volume and 23 1
Bk 1.38 10 J / K   . 

We consider two horizontal plates of infinite extent which contain the ferrofluid 

and which are separated by a vertical distance d apart. The temperatures of the upper 

and lower plates are maintained at T1 and T0 respectively. A uniform magnetic field is 

applied normal to the plates. The boundary conditions are: 

q 0 , ω 0   on the rigid plates; 
0T T  at d

z
2

  , 
1T T  at d

z
2

 ;  a 0 1
1

T T T
2

   (10) 
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The magnetic boundary conditions are that the tangential component of the 

magnetic field and normal component of magnetic induction are continuous across the 

boundary. 

In the quiescent state, following Finlayson [15], we express 

   eq a a 1 aM M H H K T T     , 

where    (
  

  
)
      

  and      (
  

  
)
     

   are susceptibility and pyromagnetic 

coefficients, respectively, where  x y zM ,M ,MM ,  x y zH ,H ,HH ,  x y z, ,   ω  

and.     
  

  
  We have also used  H   since  H 0 . 

The quiescent state solution of the basic equations (1)- (8) is 

 

b 0q , 
b 0ω ,

b aT T z  , 0 1T T

d


 

, 1
b a

K z
H

1

 
  

  
H k

, 1
b a

K z
M

1

 
  

  
M k

.                (11)                       

 

To study linear stability of the above solution we now perturb the system as 

b  q q q , 
b  ω ω ω , 

bT T   , 
b  H H H , 

b  M M M , 
bP P P  .      (12) 

On introducing the following non-dimensional quantities  

   x,y,z d x ,y ,z   , 
2d

t t


, 
2

P P
d


 , 

d


q q , 

2d


ω ω , d    , 

aM M M , 
aH H H , T

0 V,H

K

C
 


, Pr





, 
4

0g d
Ra

 



, 

2d   


, 1   , 

2
1I d I , 2

1d   , 

2
1d    , 

 

2 2
0 a

1 2
0 a

H
M

g T 1

 

   

, 
 

2 2
0 a

2
0 V,H a

H
M

C 1 T

 

  

, 
2

0 a
3

0 a

H
M

g dT

 

 

, 

 

2 2 2 4
0 a

m 1 2
a

H d
Ra Ra.M

T 1

  
 

 

,   1
4

3 a

1 M d
M

M T

  
 


,          (13) 

Where κ
 
is the fluid thermal diffusivity. 

This gives the following set of non-dimensional linearized perturbation equations 

(dropping prime and asterisks)  

 

0 q ,                          (14) 

  2 2 2
1 3 z 1

4

1 1ˆ ˆP 1 Ra M Ra z M 2
Pr t M 1 z 1

    
              

      

q
q k k ω

,    (15) 

 

     21 2
1 1 1 1 3

4

I 1 ˆ ˆ2 2 M Ra z
Pr t M 1 y x

    
                

      

ω
ω ω q ω i j
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   2 3 y x
4

1 1 ˆ ˆM Ra z M M
M 1

 
   

  
i j ,      (16) 

   
 4 4 4

y x
2 2 2 2

M M z M1ˆ ˆ ˆ ˆˆ ˆ ˆw 1
t 1 1 x y z

         
                          

M
k i j M i j k k

,    (17) 

 
 

2
22

2 4 2
4

1 M 1
z M M z 1 M w

t M t z

     
       

    

,                         (18) 

2
2 0    M .            (19) 

 

We further non-dimensionalize the magnetic potential  and the magnetization 

vector Mz as 
4M

1

 
   

  

, 4
z z

2

M
M M

1

    
   

, respectively and omit dashes. 

On taking curl curl of equation (15) and curl of equation (16), the vertical 

component of resulting equations becomes, respectively, as 

 2 4 2 2 2 2m m
1 1 1 1 z 1

Ra Ra1
w 1 w Ra M 2

Pr t 1 z 1

 
             

   
,     (20) 

2 2 21 2
1 1 1 1 m 1

4

I z
2 w 4 Ra

Pr t M 1

 
            

   

 

           2 z
m

4

M1 z
Ra

M 1 z

   
     

    

,      (21) 

where    2 2 2 2 2
1 / x / y       . 

Taking the divergence of magnetization equation (17) and using equation  (19), we 

obtain 

   
2

2 2
2 2 1 2

4 2

w 1 z 1
1 1 (1 )

t z M zz

       
             

         

.     (22) 

Taking vertical component of equation (23), we have 

z
z

M 1
w M (1 )

t z

  
          

.              (23) 

 

Equations (18), (20), (21), (22) and (23) are five equations for five variables 

zw, , , M   and θ. In these equations, Pr is the Prandtl number, ξ1 is non-

dimensionalized vortex viscosity, Ra is the viscous Rayleigh number,  is the 

susceptibility, 1 is the non-dimensionalized spin viscosity,  is the non-

dimensionalized magnetic relaxation and M4=d/Ta. Thus, in comparison to the 

problem in quasistationary theory [15], we now have three more parameters: 1, 1 and 

 which influence the stability problem. We note that if we set 1=0 in (20) and =0 in 

(22) and rearrange the terms we recover the equations studied in Finlayson [15]. There 

are, however, no counterparts to equation (21), the angular momentum equation, and 

the magnetization equation (23) in quasiequilibrium theory Neuringer and Rosensweig 

[2].     
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 In order to match the domain of Chebyshev pseudospectral-QZ method, we reset 

the present domain from 1 1
,

2 2

 
 
 

 to  1,1  with coordinate transformation   from z to 

2z in equations (18), (20)-(23). 

We now perform the standard normal mode analysis and look for the solution of 

variables zw, , ,M ,    in the form 

 

             z z x yw, , ,M , w z , z , z ,M z , z exp t i k x k y              
.      (24) 

On substituting (24) into equation (18), (20)-(23) in the new domain, we obtain 

            2 2 4 2 2 4 2 2
1 14D k w z 1 16D 8k D k w z 2 4D k z

Pr


         

 

               
     2 2 2m m

z

Ra Ra
k Ra z k D z k M z

1 1
    

 

,      (25) 

         
 

 2 2 2 2 21 2
1 1 m

4

I 1
z 2 4D k w z 4D k z k Ra z z

Pr M 2 1

 
               

 

        

 
 

     2 2
1 m z

4

1 1
4 z Ra z 4D k z 2DM z

M 2 1

 
              

                 (26) 

         2 2
2

4 2

1 z 2(1 )
4D k z 2Dw z z D z

M 2

   
         

     

        

     2 2
2

1
4 1 D 1 k z       
 

,      (27) 

         z z

1 2 1
M z w z M z D z z

 
      

  

,              (28) 

 
 

       2 22
2 2 4

4

1 M 2 1
z z D z 4D k z 1 M M M z w z

M 2

     
             

          

(29) 

With the boundary conditions  

w 0, 0, 0,    
 

at z 1  ; 
zM 2D k 0,   

 

at z 1  ; 
zM 2D k 0,   

 

at 

z 1  ; 

and 

Dw 0,

 

at z 1  ,      on rigid-rigid surface 

Dw 0,
 

at z 1  ,  2D w 0,
 

at z 1  ,    on rigid-free surface 

2D w 0,
 

at z 1  ,    on free-free surface                       (30) 

 

3. Numerical Results and Discussion 

 

We begin our discussion by noting that the solution of the eigenvalue problem (25)-

(29), together with the boundary conditions (30), depends upon a number of 

parameters. In order to carry out the numerical calculations, it is necessary to assign or 

estimate various parameters. In this respect, we have adopted values of some physical 

quantities from the Table 1 [10]. Since most of the calculations here are based upon 

the Ester I base fluid, we only report the values in this case:
 
Ta = 298 K, Ms =15900 
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A/m, 0 =1150 kg/m
3
,   = 0.014 kg/(m.s), KT = 0.31 kg.m/(K.s

3
),  = 8.110

−4
, = 

0.4, 2 = 0.35,  Pr 146.2 , 7 210 m / sec  . For the remaining parameters we have 

adopted the values discussed and used by Schumacher et al. [17], as 17 2I 7.5 10 m   

and 15 12 10 kg.m.s   . Following earlier writers Sunil and Mahajan [18], we have 

set M2 = 0
 
in our calculations. 

In the following, Rac represents the critical Rayleigh number, Ram,c is the critical 

magnetic Rayleigh number and Ramf,c is the critical magnetic Rayleigh number in the 

gravity free environment. 

 

Table 1. Critical temperature differences ( cT ) and critical Rayleigh ratios ( cRa

1707.76

) with 

applied magnetic field ( aH ) for Ester I base ferrofluid layer width d = 1mm. 
 

 

We remark that we carried out calculations for Rac and Ram,c for different values d, 

for the Ester I base ferrofluid, but noticed that significant variation occurred only for d 

= 1 mm. Our all subsequent calculation in this section are thus for d = 1 mm. 

Moreover, the values considered for ξ1  and τ  are dimensionless values throughout.  

Before proceeding with the discussion of the results we wish to make two 

remarks. First, in our calculation, we do not observe the oscillatory instability 

behavior. In view of the remark presented in Ryskin and  Pleiner [19] we could state 

that the specific experimental conditions, which are required to produce oscillating 

convective instability in ferrofluids, do not meet in the present case. One of the reasons 

may be that the value of the Lewis number is relatively small for an Ester I base fluid, 

i.e., the thermal diffusion time is much shorter than the mass diffusion time. The 

second remark is that we did not notice the effect of spin viscosity in our calculations.  

Regarding the experimental results reported in Schwab et al. [20], it can be concluded 

that at H = 40.8 kA/m, the convection occurs at Rac/Rc = 0.45 where Rc = 1708.76.  

As a result the heat flux in a ferrofluid, keeping similar temperature difference, is  

nearly doubled compared to the viscous fluid case. In Table 1 we have provided the 

critical temperature difference and the critical Rayleigh ratio, for Ester I base 

ferrofluids, at d = 1 mm. Our values, in fact, are smaller than those in Schwab et al. 

[20]. The difference could be because of the different base ferrofluids considered in 

the two cases and also because our results are for d = 1 mm, whereas the results 

reported in Schwab et al. [20] are for d = 3 mm.  

We also note that for lower values of the applied magnetic field there is a decrease 

both in ΔTc and Rac/Rc, but both the values increase as the magnetic field increases. 

This indicates that the non dilute ferrofluid considered here undergoes a structural 

change as the magnetic field is increased. 

Applied magnetic field Ha (A/m) 
cT  (K) Rayleigh ratio 

13205.4 86.04 0.3946 

26410.8 53.43 0.2451 

39616.2 70.984 0.3256 

52821.6 88.413 0.4055 
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Fig. 1.  Plot of the comparative values of the critical Rayleigh number Rac, between the 

qusistationary theory and the present theory for ξ1 =0.2, and 44.45 10    , and rigid-rigid 

boundaries. 

 

Figs. 1 and 2 provide the comparative values of the critical Rayleigh number Rac 

and the critical magnetic Rayleigh number Ram,c, between the qusistationary theory 

and the present theory. We carry out calculations for various other combination of the 

values of τ  and ξ1 and, eventhough there were some variations observed, consistent 

with the variations discussed subsequently, overall picture are similar to those as 

presented in Figs. 1 and 2. It is well known that an increase of temperature leads to the 

decrease in magnetization i.e. grad T and grad Mi act in the opposite direction. From 

equations (7) and (8), it also follows that grad M and grad H act in the opposite 

direction. Thus in the Rayliegh-Bénard problem, under consideration, in a magnetic 

fluid, where grad T is responsible for convection, the convection is accelerated because 

grad H also acts in the same direction as grad T. As a result we have lower values for 

the critical Rayleigh number in a magnetic fluid. From these Figures, we also observed 

the tight coupling between the buoyancy and the magnetic forces. Whenever, there is 

the decrease of the Rayleigh number Rac (buoyancy related) there is corresponding 

increase in the magnetic Rayleigh number  Ram,c . 

 

Fig. 2. The comparative values of the critical magnetic Rayleigh number Ram,c, between the 

qusistationary theory and the present theory for ξ1 = 0.2, and 44.45 10   , and rigid-rigid 

boundaries. 

Rac 
 

αL  

Ram,c 
 

αL  
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When magnetization relaxation τ and vortex viscosity ξ1 are considered, we have 

some interesting situations. First, the presence of a finite τ implies the involvement  of 

the magnetic field for a longer period of time in the fluid (as compared to 

instantaneous relaxation or no relaxation in the quasistationary theory) and this adds 

up to the magnetic field already acting in the quasistationary theory. Accordingly, in 

the present case, we have a considerably greater value of grad Hi to add to grad T.  As 

a result the convection is further accelerated and we have a lower value of Rac as 

compared to the quasistationary theory. This is clearly reflected in Figs. 1 and 2. With 

regard to the vortex viscosity we point out that it connects the linear momentum and 

the angular momentum equations and also relates the rate of transfer of internal to the 

external angular momentum. In the earlier studies, it was estimated to be 3
1 2
      

where is the hydrodynamic volume (fraction of the particles) and μ is the viscosity of 

the carrier fluid. The above expression, however, is valid only in a dilute regime.  

 
Fig. 3. Plot of 

cRa  (with gravity) with 
L  for Ester I base fluid and rigid-rigid boundaries. For 

different values of ξ1, at 24.45 10   . 

 

Now as the field increases, it is likely that the difference between the vorticity and 

spin decreases. This is so because in a non-dilute magnetic fluid, as the field is 

increased, the magnetic particle will start forming chains and thus offer more 

resistance to vorticity. Thus increasing field implies a steady increase in 1 . From 

Figs. 1 and 2, we notice that the effect of τ dominates for lower values of αL 
 and, when 

magnetic field is increased, is soon overtaken by the presence of ξ1. 

In order to have more clear idea of vortex viscosity variation, we have plotted the 

Rac against αL, for different values of ξ1. Fig. 3 shows the variation of Rac at  
24.45 10   . As can be seen from these Figs, we first note that, the general pattern 

remains the same for different values of ξ1. That is, for low values of L, Rac 

decreases, and when L values are increased further, reverse trend takes place. Now as 

L is increased, the values of Rac increase. For the specific variation of ξ1, we find that, 

with the increase of L, as ξ1 increases so does Rac. The variation in Rac values, 
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however, is significant at higher L values. We also carried out calculations for
11.12 10   . These, in general, showed a similar behavior except that for lower 

values of L, Rac values were more prominent as compared to those at
24.45 10   . 

We thus can conclude that, an increase in the vortex viscosity leads to a more 

stabilized flow behavior. Fig. 4 shows the plot of Rac against L for different values of 

τ, at
1 0.2  .   Here again, the general pattern remains the same. Rac decrease up to 

certain value of L, and then increases with the increases of L. The variation of τ, 

however, is significantly different from that of ξ1. Now as τ  increases the values of Rac  

decreases with L. The flow is thus most stable at the lowest value of τ. Thus unlike 

the effect of the variation of vortex viscosity, in which case the increase of vortex 

viscosity leads a more stabilized flow, the increase of magnetization τ
 
leads to an 

unstable behavior.  

 

Fig. 4.  Plot of Rac 
 
(with gravity) with L for Ester I base fluid and rigid-rigid boundaries.  For 

different values of τ at
1 0.2  . 

 

In Finlayson [15], to elaborate the tight coupling between the buoyancy and 

magnetic forces an equation of the type 

 

m,cc
RaRa

1
1708 2568

               (31)  

 

has been suggested. Our calculations reveal that this equation is nearly satisfied only at 

very low values of L. However, as L increases, the first term in equation (31) alone 

takes on the values closer to 1, or even greater than 1 in some cases, and thus this 

equation can not be satisfied. The tight coupling, as suggested in Finlayson [15], does 

not hold in the present case because of the increase of magneto viscous dissipation.  
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4. Conclusion 

In conclusion, we remark that the consideration of vortex viscosity, magnetization 

relaxation and spin viscosity, in the governing equations of the convection problem of 

a ferrofluid results in some typical behavior. We have found that application of a weak 

magnetic field promotes the convection. However, when the field strength is increased 

gradually, the convection process is slowed down and a further increase of the 

magnetic field, in fact, inhibits convection. We can thus conclude that in the 

convection problem in a magneticfluid, application of applied field is initially 

destabilizing before becoming stabilizing. We note that ferrofluid are structured fluids 

and contain a mixture of large and small particles. When the magnetic field is 

increased gradually, the larger size particles may form chains, and as these chains 

become larger, they could result in the increase of vortex viscosity.  

To our knowledge this is the first study which has dealt with the convection 

problem in ferrofluids using a vortex viscosity model, with a specific magnetization 

relaxation equation. It will be interesting to study the convection problem in other 

model equations and to determine and compare the predictions based on different 

models.    
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