Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 2 (3), 489-493 (2010)

www.banglajol.info/index.php/JSR

Short Communication

New Bounds on the Minimum Average Distance of Binary Codes

M. Basu¹ and S. Bagchi²

¹Department of Mathematics, University of Kalyani, Kalyani, Nadia, W.B., India, Pin-741235 ²Department of Mathematics, National Institute of Technology, Durgapur, Burdwan, W.B., India Pin-713209

Received 23 June 2009, accepted in revised form 17 August 2010

Abstract

The minimum average Hamming distance of binary codes of length n and cardinality M is denoted by $\beta(n, M)$. All the known lower bounds $\beta(n, M)$ are useful when M is at least of size about $\frac{2^{n-1}}{n}$. In this paper, for large n, we improve upper and lower bounds for $\beta(n, M)$.

Keywords: Binary code; Hamming distance; Minimum average Hamming distance.

© 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.

DOI: 10.3329/jsr.v2i3.2708 J. Sci. Res. 2 (3), 489-493 (2010)

1. Introduction

In this paper we will consider only binary codes. Let $F_2 = \{0,1\}$ and let F_2^n denote the set of all binary words of length n. For $x, y \in F_2^n$, d(x,y) denotes the Hamming distance between x and y and $wt(x) = d(x, \mathbf{0})$ is the weight of x, where $\mathbf{0}$ denotes all-zero codeword. A binary code C of length n is a non empty subset of F_2^n . An (n, M) code C is a binary code of length n with cardinality M [1].

The average Hamming distance [2] of an (n, M) code C is defined by

$$\bar{d}(\mathcal{C}) = \frac{1}{M^2} \sum_{c \in \mathcal{C}} \sum_{c' \in \mathcal{C}} d(c, c') \tag{1}$$

The minimum average Hamming distance of an (n, M) code is defined by

 $\beta(n,M) = \min\{\bar{d}(C): C \text{ is an } (n,M) \text{ code } \}.$

An (n, M) code C for which $\bar{d}(C) = \beta(n, M)$ is called extremal code.

² Corresponding author: satya5050@gmail.com

On the extremal combinatories of Hamming space, Ahlswede and Katona [3] posed the problem to determine the value of $\beta(n, M)$ for $1 \le M \le 2^n$. Ahlswede and Althofer [4] observed that this problem also occurs in the construction of good codes for writing efficient memories, introduced by Ahlswede and Zhang [5] as a model for storing and updating information on a rewritable medium with constraints.

2. Preliminaries

The distance distribution of an (n, M) code C is the (n + 1)-tuple of rational number $\{A_0, A_1, A_2, \ldots, A_n\}$, where $A_i = \frac{|\{(c,c') \in C \times C\}: d(c,c') = i|}{M}$, the average numbers of codewords which are at distance i from any given codeword $c \in C$. It is clear that $A_0 = 1$, $\sum_{i=0}^n A_i = M$ and $A_i \geq 0$ for $0 \leq i \leq n$.

Let
$$d(c_i, c_j) = d_{ij}$$
 where $c_i, c_j \in C$, $i, j = 1, 2, ..., n$.

Therefore,
$$d(c_i, c_j) = d(c_j, c_i) = d_{ij} = d_{ji}$$
 and $d_{ii} = 0$.

Consequently, the following composition distance table (Table 1) is symmetric and all diagonal elements are zero.

	Table 1				
distance	C_1	C_2	C_3		C_n
C_1	0	d ₁₂	d ₁₃		d _{1n}
C_2	$d_{21} \\$	0	d_{23}		$d_{2n} \\$
C_3	$d_{31} \\$	d_{32}	0		$d_{3n} \\$
•					
•	•	•	•		
C _n	$\overset{\cdot}{d}_{n1}$	$\overset{\cdot}{d_{n2}}$	$\overset{\cdot}{d}_{n3}$		0

From Eq. (1), we get

$$\bar{d}(C) = \frac{1}{M^2} \sum_{c \in C} \sum_{c' \in C} d(c, c') = \frac{2}{M^2} . S$$
 (2)

where S is the sum of upper triangular components of the composition distance table.

In order to develop our main result in the next section we need the following theorems [2,6,7] on bounds.

Theorem 1: $\lim_{n\to\infty} \beta(n, M) = \frac{5}{2}$.

Theorem 2:
$$\beta(n,M) \ge \begin{cases} \frac{3n}{n+2} - \frac{n}{M}, & \text{if } n \text{ is even} \\ \frac{3(n+1)}{n+3} - \frac{n+1}{M}, & \text{if } n \text{ is odd.} \end{cases}$$

3. Main Result

In this section we develop the following result.

Theorem: For any code C(n, kn) satisfy the following inequality

$$\frac{3k-1}{k} \le \lim_{n \to \infty} \beta(n, kn) \le \frac{2}{k^2} [2k(k-1)+1], \ k = 3, 4, 5, \dots$$

and
$$\beta(n,2n) = \frac{5}{2}$$
, for $n \to \infty$.

Proof: Let C be the (n, kn) code. The code C partitioned by horizontal lines given below:

$$\begin{array}{c} \underline{0\,0\,0\,0\,0} \cdots 0\,0\,0 \\ 1\,0\,0\,0 \cdots 0\,0\,0 \\ 0\,1\,0\,0\,0 \cdots 0\,0\,0 \\ \vdots \\ \underline{0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ 1\,1\,0\,0\,0 \cdots 0\,0\,0 \\ 1\,0\,1\,0\,0 \cdots 0\,0\,0 \\ \vdots \\ \underline{1\,0\,0\,0\,0 \cdots 0\,0\,1} \\ 0\,1\,1\,0\,0 \cdots 0\,0\,0 \\ 0\,1\,0\,1\,0 \cdots 0\,0\,0 \\ \vdots \\ \underline{0\,1\,0\,0\,0 \cdots 0\,0\,1} \\ 0\,0\,1\,1\,0 \cdots 0\,0\,0 \\ 0\,0\,1\,1 \cdots 0\,0\,0 \\ \vdots \\ \underline{0\,0\,1\,0\,0 \cdots 0\,0\,1} \\ 0\,0\,0\,1\,1 \cdots 0\,0\,0 \\ \vdots \\ \underline{0\,0\,0\,1\,0 \cdots 0\,0\,1} \\ \vdots \\ \underline{0\,0\,0\,0\,1\,0 \cdots 0\,0\,1} \\ \vdots \\ \underline{0\,0\,0\,1\,0 \cdots 0\,0\,1} \\ \vdots \\ \underline{0\,0\,0\,0\,1\,0 \cdots 0\,0\,0\,1} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ \underline{0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0 \cdots 0\,0\,0} \\ \underline{0\,0\,0\,0\,0\,0$$

Except all-zero codeword, the number of codewords between the first two horizontal lines is n, between the next two horizontal lines; the number of code words is n-1 and so on. Proceeding in this way, in order to meet the total number of codewords kn, we need to include the remaining codewords from below the (k+1)th horizontal line.

First we prove the upper bounds of $\lim_{n\to\infty} \beta(n, kn)$.

When k = 2, we consider only first three parts of the above codewords.

We can easily prove the following result by using Theorem 2,

$$\beta(n,2n) \le \overline{d}(C) = \frac{5}{2} - \frac{4n-2}{n^2}.$$

Taking limit $n \rightarrow \infty$, we have

$$\lim_{n\to\infty} \beta(n,2n) \le \bar{d}(C) = \frac{5}{2} = \frac{2}{2^2} [2.2(2-1) + 1]$$
(3)

Again when k = 3, we take only first four parts of the above codewords and two codewords from rest. Then by (2), we have

$$\beta(n,3n) \le \overline{d}(C) = \frac{26}{9} - O(\frac{1}{n})$$

Taking limit $n \rightarrow \infty$, we have

$$\lim_{n \to \infty} \beta(n,3n) \le \bar{d}(C) = \frac{2}{3^2} \cdot 13 = \frac{2}{3^2} [2 \cdot 3(3-1) + 1]$$

Again when k = 4, then we take only first five parts of the above codewords and any five codewords from rest. Then by (2), we have

$$\beta(n,4n) \le \overline{d(C)} = \frac{50}{16} - O(\frac{1}{n})$$

Taking limit $n \rightarrow \infty$, we have

$$\lim_{n \to \infty} \beta(n, 4n) \le \overline{d(C)} = \frac{2}{4^2} \cdot 25 = \frac{2}{4^2} [2 \cdot 4(4-1) + 1].$$

In this way, if we increase the value of k, we get a sequential way of the above theorem for right hand side:

$$\lim_{n \to \infty} \beta(n, kn) \le \overline{d(C)} = \frac{2}{k^2} [2k(k-1)+1], \ k = 2, 3, 4, \dots$$

Now we prove the lower bounds of $\lim_{n \to \infty} \beta(n, kn)$.

From Theorem 2, we have

$$\beta(n,M) \ge \begin{cases} \frac{3n}{n+2} - \frac{n}{M}, & \text{if } n \text{ is even} \\ \frac{3(n+1)}{n+3} - \frac{n+1}{M}, & \text{if } n \text{ is odd.} \end{cases}$$

Taking M = kn, we get

$$\beta(n,kn) \ge \begin{cases} \frac{3n}{n+2} - \frac{n}{kn} = \frac{3k-1}{k} - \frac{6}{n+2}, & if \ n \ is \ even \\ \frac{3(n+1)}{n+3} - \frac{n+1}{kn} = \frac{3k-1}{k} - \frac{6kn+n+3}{k(n^2+3n)}, & if \ n \ is \ odd. \end{cases}$$

Taking limit as $n \rightarrow \infty$, we have

$$\lim_{n\to\infty}\beta(n,kn)\geq \frac{3k-1}{k}\tag{4}$$

Thus

$$\frac{3k-1}{k} \le \lim_{n \to \infty} \beta(n, kn) \le \frac{2}{k^2} [2k(k-1)+1], \ k = 3, 4, \dots$$

Also, it is clear from (3) and (4),

$$\beta(n,2n) = \frac{5}{2}$$
, for $n \to \infty$.

This completes the proof.

Acknowledgement

The authors are thankful to the reviewers for valuable suggestions which considerably improved the presentation of the paper.

References

- S.-T. Xia and F.-W. Fu, Discrete Appl. Math. 89, 269 (1998). doi:10.1016/S0166-218X(98)00081-X
- 2. B. Mounts, arxiv: 0706.3295v1 [Math.CO] 22 June 2007.
- 3. R. Ahlswede and G. Katona, Discrete Math. 17, 1 (1977). doi:10.1016/0012-365X(77)90017-6
- R. Ahlswede and I. Alth"ofer, J. Combin. Theory Ser. B 61, 167 (1994). doi:10.1006/jctb.1994.1042
- I. Alth"ofer and T. Sillke, J. Combin. Theory Ser. B 56, 296 (1992). doi:10.1016/0095-8956(92)90024-R
- M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and N. J. A. Sloane, IEEE Trans. on Inform. Theory 24, 81 (Jan. 1978). doi:10.1109/TIT.1978.1055827
- F. -W. Fu, V. K. Wei and R. W. Yeung, Discrete Appl. Math. 111 (3), 263 (2001). doi:10.1016/S0166-218X(00)00284-5