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Abstract

We have studied Wigner rotations of different types of Lorentz Transformations
according to the nature of movement of one inertial frame relative to the other inertial
frame. When the motion is along any arbitrary direction then we can find the formulae
for Wigner rotations using the velocity addition formulae for most general, mixed
number, quaternion and geometric product Lorentz transformations. Finally we have
used simulated data for applying the Wigner rotation formula in pion decay chain and
concluded the result.

Keywords: Special Lorentz transformation; Most general Lorentz transformation; Mixed
number Lorentz transformation; Quaternion Lorentz transformation; Geometric product
Lorentz transformation; Wigner Rotation.

© 2016 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
doi: http://dx.doi.org/10.3329/jsr.v8i3.27033 J. Sci. Res. 8 (3), 249-258 (2016)

1. Introduction

The composition of two Lorentz boosts when they are not collinear results a Lorentz
transformation [LT] that is not a pure boost but is the composition of a boost and a
rotation. This rotation is called Thomas rotation, Thomas—Wigner rotation or Wigner
rotation. The rotation was discovered by Thomas in 1926 and derived by Wigner in
1939 [1]. If a sequence of non-collinear Lorentz transformations returns an object to its
initial velocity, then the sequence of Wigner rotations can combine to produce a net
rotation called the Thomas precession [2]. The Thomas effect in nuclear spectroscopy
is mentioned in Jackson’s book on electrodynamics [3]. In fact, the Wigner rotation is
the key issue in many branches of physics involving LTs [4].

The Wigner rotation appears in physical processes whose underlying mathematical
language includes the Lorentz group; Berry’s phase is an example of it [5, 6]. This
branch of physics deals with a physical system which gains a phase angle after coming
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back to the original state at the end of a series of transformations. If the
transformations include those of a group isomorphic to the Lorentz group, the Wigner
rotation plays a vital role in that case [7].

In recent times the Lorentz group has become an important scientific language in
both quantum and classical optics. The theory of squeezed states is a representation of
the Lorentz group [8, 9]. Optical instruments are everywhere in modern physics based
on classical ray optics. It is enjoyable to observe that the Lorentz group is the essential
scientific language for ray optics, including polarization optics [10], interferometers
[11], lens optics [12,13], laser cavities [14] and multi-layer optics [15].

It is possible to perform mathematical operations of the Lorentz group by arranging
optical instruments. For instance, the group contraction is one of the most
sophisticated operations in the Lorentz group. Since there are many mathematical
operations in Quantum field theory and optical sciences corresponding to LTs, the
Wigner rotation becomes one of the important issues in classical and quantum optics.
There are different types of LTs. At first we have discussed these LTs.

1.1. Special Lorentz transformation

Let us consider two inertial frames of reference S and S, where the frame S is at rest
and the frame S is moving along the X-axis with velocity U with respect to the S
frame. The space and time co-ordinates of S and Sare (x, y, z, t) and (X, Yy, Z, t)
respectively. The relation between the co-ordinates of S and S’ is called the special
Lorentz transformation (SLT), can be written as [16]

Y Y’
A
S s [ u
X J—>x
Z Z’ /

Fig. 1. Special Lorentz transformation

t —UX )
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and the inverse SLT can be written as
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1.2. Most general Lorentz transformation

When the motion of the moving frame is along any arbitrary direction instead of X-
axis , i.e., the velocity U has three components Uy , U, and U, then the relation
between the space and time co-ordinates of S and S’ is called the most general Lorentz
transformation(MGLT), can be written as [17]

t=yf-r.G} @3)

and the inverse MGLT can be written as

r= f’+0{(r" Y) (7—1)+t'7}

U!Z
= Ar+r.0) (4)
where, y:[l_U:JZ, Fexi+yjrzk, F'=XT+Yy j+zk, c=1
c

1. 3. Mixed number Lorentz transformation

Consider same case as MGLT, then wusing the mixed product [18-
20] A® B = A.B+iAx B, the mixed number Lorentz transformation [21] (MNLT) can

be written as

t'=y(t-r.U)

F'=y(F—tU —ifxU) (5)
and the inverse MNLT can be written as
t=y(t'+7.U)

F =y +t'U +if'xU) (6)
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1.4. Quaternion Lorentz transformation

Again, consider same case as MGLT, then using the quaternion product [22-24]
AB =-A.B+AxB the quaternion Lorentz transformation (QLT) [25] can be written as

F'=y(F—tU —FxU) (7
and the inverse QLT, can be written as

t=y(t'-7.U)
F=y(F +t'U+F xU) 8

1.5. Geometric Product Lorentz transformation

Again, consider same case as MGLT, then using the geometric product of two vectors
[26-28] AB = A.B+ AxB the geometric product Lorentz transformation [21] (GPLT)
can be written as

t'=y(t-r.U)
F'=y(F—tU —FxU) )

and the inverse GPLT can be written as

t=yt +F.

G c

)
F=y(F +t'U+r'xU) (10)
2. Wigner Rotation

Consider the pion decay chain 7 — x — e, where pion (z) is moving with velocity
U with respect to lab frame S, muon () is moving with velocity v with respect to z,
electron (e) is moving with velocity \y with respect to u then we want to find the

velocity of electron with respect to lab frame in different types of LTs. There are two
ways to get the velocity of electron with respect to lab frame (U @V)@v\“/ and

u @(V@VV)- The angle between these two velocity vectors is called Wigner rotation,
where @ denotes the Lorentz sum.
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Fig. 3. Wigner rotation of Lorentz transformations.
2.1. Wigner Rotation for special Lorentz transformation

SLT is one dimensional. The velocity of the moving frame is along x-axis. So there is
no Wigner rotation for SLT.

2.2. Wigner Rotation for most general Lorentz transformation

If W” be the velocity of muon with respect to lab frame then according to the velocity
addition formula for the MGLT [21] we can write

\7+U|:(U'V )Uz (7u _1)+7u:|
70 (1+ U.\7)
Now, if muon moves with velocity i " with respect to lab frame and electron moves

W"=U®V = @y

with velocity W respect to muon then according to the velocity addition formula for
MGLT [21] we can write

W =V\7 " @\/\7 — =
Y LW W)
W (lj @\7){(0_®\72\2N (7(ue>v) 1)+ }/(U®V)}
o 0 07 o Gevy 12)

Again, from muon and electron according to the velocity addition formula for MGLT
[21] the resultant velocity of VV and v can be written as

(VVVZV) (Vv _1)+7v}

7, @+V.W)

vV+\7{
W' -V OW

13)
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Finally, if electron moves with velocity W' with respect to pion then the resultant
velocity of electron with respect to lab frame can be written as

{0, e

W"=U®W'= —
7o (@+U. W)
ow)eg[U-V o), _1)%}
or,0 @V ew )= oW o) 14)

Specifically to illustrate Wigner rotation we have used simulated data for velocity
vectors in unit of ¢, defined as

u
= (vx,vy,o): (0.3,0..5,0.0)velocity of muon relative to pion ;
W = (w,,w,,0)=(0.4,0.2,0.0,)velocity of electron relative to muon.

(ux,uy, o): (0.5,0.2,0.0)velocity of pion relative to lab frame;

The corresponding y factors are as follows:

1 1 1
Yo = =1.18678, y, = =1.230915, y.. .,y = —————-==1.826029
Y 1-U? ! W e) 1_(0@\7)2
. 0.7545323
From equation (11) and (12) we have . .\ . _ (say)
(UeV)ew =| 0549697 | = A
0
.7646265
From equation (13) and (14) we get . . . _ (sa
q (13) and (14) We Get 5 o (G i) 5337016 | = 5 V)
0
We know that
A.B = ABcosd
or,H:cos{A'BJ
AB
where

A =0.75453231 +0.549697  + 0K , A=1/(0.7545323) +(0.549697)* =.933534

and
B = 0.76462650 +0.5337916 ] + Ok , B =+/(0.7646265)* +(0.5337916)? =.9325166

A.B =.870359032
Hence, @, =cos™*(.99979)=1.15°
Again let,
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~(u,,u,, 0)=(05,0.2,0.0), V =(v,,v,,0)= (0.2, 0.4,0.0), W = (w,,w,,0)=(05,03,0.0) &
~(u,,u,, 0)=(0.4,0.3,00),V =(v,,v,,0)=(02, 0.5, 0.0), W = (w,,w,,0)=(0.6,0.3, 0.0)

c G

be two sets of velocity vectors of pion decay chain 7 — ; — e, as Fig. 3 then using
equations (11),(12),(13) and (14) we have the velocity vectors of electron relative to
lab frame, (U @V)@w and j @67@\/\7) are

0.755839 [0.796143 .
0.68265 0.69576 respectively.
0.547582 | , | 0.4592595 0.668553 | , | 0.653219
0 0 0 0

Using similar process as previous one we have the Wigner rotations in these cases
Ouigner = €05 *(0.9946244) =5.94° (App.) and @, . =cos*(0.999778)=1.2" (App.)

Wigner
respectively.

2.3. Wigner Rotation of mixed number Lorentz transformation

If W"be the velocity of muon with respect to lab frame then according to the velocity
addition formula for the MNLT [21] we can write

U +V +iV xU
1+UV
Now using similar process as MGLT the velocity vectors of electron relative to lab

frame for MNLT as Fig. 3, we have

W"=U®V = (15)

(U @\7)+VV +iW x (L] @\7)

T o7 )i d
(Uov)ew = ETT (16) an
- (= ~_U+(\7@VV)+i67®VV)xU
Uelow)= 10 [ oW) 17)

Specifically to illustrate Wigner rotation for MNLT velocity vectors are defined as
U =(u,,u,, 0)=(05,0.2,0.0),V =(v,,v,,0)=(0.3,0 5,0.0), W = (w,,w,,0)=(0.4,0.2,0.0,),
u

(u,,u,, 0)=(05,0.2,00), V =(v,,v,,0)= (0.2, 0.4,0.0), W =(w,,w,,0)=(0.5,03,0.0) &
U =(u,,u,, 0)=(0.4,03,0.0),V = (v,,v,,0)=(0.2, 0.5, 0.0), W = (w,,w,,0)=(0.6,0.3, 0.0)

be three sets of velocity vectors of pion decay chain 7 — x — e, as Fig. 3 then using
equations (15), (16) and (17) we have the velocity vectors of electron relative to lab
frame are (Lj @\7)@\/\7 and UJ @67 @W) are

0.94 0.88 0.7825 0.7825 0.70819 | | 0.7541
064 || 0.62 |,| 05111} | 0.5111|&|0.6847 |,|0.59288
—.058i | | —.055i | | —.0409i | | —.0409i 0.2404i | | 0.08535i

respectively.
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Using similar process as MGLT we have the Wigner rotations of each case
Buyioner =08 1(1)= 0"

Wigner
2.4. Wigner Rotation of Quaternion Lorentz transformation

If W” be the velocity of muon with respect to lab frame then according to the
velocity addition formula for QLT [29] we can write
W"=U®V = (18)

Now using similar process as MGLT the velocity vectors of electron relative to lab
frame S for QL Tas Fig. 3, we have

- - ai(U®V)+VV+VV and
Ueov)ew = G ovIW 19)

i) UV @W )+ (V @W )xU

Uelew)= L0 o) (20)

Specifically to illustrate Wigner rotation for QLT velocity vectors are defined as

<
1]

u,,u,, 0)=(0.5,0.2,0.0),V =(v,,v,,0)=(0.3,0 5,0.0), W = (w,,w,,0)=(0.4,0.2,0.0,),
(u,,u,, 0)=(0.5,0.2,0.0), V =(v,,v,,0)=(0.2, 0.4,0.0), W =(w,,w,,0)=(0.5,0.3,0.0) &

U =(u,.u,, 0)=(0.4,03 00),V =(v,,v,,0)=(02, 0.5, 0.0), W = (w,,w,,0)=(0.6,0.3, 0.0)

be three sets of velocity vectors of pion decay chain 7 — ;, —e~, as Fig. 3 then using

equations (18), (19) and (20) we have the velocity vectors of electron relative to lab

frame are (j ov)ewand U o ow);

<
1]

3.662 3.662 3.6278 3.6586 5.999 5.999
3.193 |,/3.193 || 3.167 |,| 3.191 |&|5.558 |, 5.558
—0.241||-0.241|| -0.2388 | | —0.2395 0.9411] | 0.9411

respectively.

Using similar process as MGLT we have the Wigner rotations of each case
BOrigner = €08 (1) =0

Wigner
2.5. Wigner Rotation of Geometric product Lorentz transformation

If w” be the velocity of muon with respect to lab frame then according to the velocity
addition formula for GPLT [21] we can write
U+V +V xU

1+UV
Now using similar process the velocity vectors of electron relative to lab frame for
GPLTas Fig. 3, we have

W' =U®V = (21)
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(U@\?)@VVJU@V)*VE’*VS’XY v) (229  and
1+Jev)w

i) U+ OW )+ V @W )xU

Uolow)= 10 o) (29)

Specifically to illustrate Wigner rotations for GPLTvelocity vectors are defined as

U =(u,,u,, 0)=(05,0.2,0.0), V = (v,,v,,0)=(0.3,0 5,0.0), W = (w,,w,,0)=(0.4,0.2,0.0,),
U =(u,, y,o) (0.5,0.2,00), V =(v,,v,,0)=(0.2,0.4,0.0), W = (w,,w,,0)=(05,03,0.0) &
U =(u,,u,, 0)=(04,03 00),V =(v,,v,,0)= (0.2, 05,0.0), W = (w,,w,,0)=(0.6,0.3, 0.0)

be three sets of velocity vectors of pion decay chain 7 — ;4 —e”, as Fig. 3 then
using equations (21), (22) and (23) we have the velocity vectors of electron relative to
lab frame are (J @V )ew and U @ (\7 @VV);

0.738 0.7497 0.726316 0.7497073 0.708196 0.67541
{0.6 },{0.59298 1 { 0.604678 [ 0.59298221 & li0.6847 1[0.69781341
—0.0409 | | —0.040936 —0.040936 | | —0.040936 0.08743 0.087433
respectively.

Using similar process as MGLT we have the Wigner rotations of the above cases are
Quigner = €05 *(.9999171) = 0.74", B e, = COS *(.99259) = 2.2°

& Byyioner = €05 (0.99945) =1.9° respectively.

Wigner
3. Comparison of the Study

3.1. Comparison of Wigner Rotations of special, most general, mixed number,
quaternion and geometric product Lorentz transformations

Names of Wigner Rotation Wigner Rotation Wigner Rotation

Lorentz U =(u,,u,,0)=(5.2,0) U=(u,u,,0)=(5.20) U=(u,u,0)=(430)

transformations V=(,v,0=(350 V=(,.v0=(2.40 V=(,.v,0)=(250)
WZ(WX,Wy,0)=(.4,.2, 0) W =(w,,w,,0)=(5,3,0, ) W:(wx,w ,0)=(6,3,0,)

SLT Not applicable Not applicable Not applicable

MGLT 1.15° 5.94° 1.2°

MNLT 0° 0° 0°

QLT 0° 0° 0°

GPLT 0.74° 2.2° 1.9°

4,  Conclusion

We have discussed the Wigner rotations for different types of LTs. In the case of
MGLT and GPLT we have found Wigner rotations but the values are different in each
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case. In the case of MNLT and QLT, there is no Wigner Rotation. We can apply our
results in the study of hidden magnetic forces manifest in some problems of
Electromagnetism, Spin-orbit interaction of electron with nucleus in an atom in
Quantum Mechanics, study of the quantized electromagnetic field in phase space and
of the interaction between atoms and photons in cavities in quantum optics.
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