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Abstract 
 
In the present paper, a study of magnetohydrodynamic (MHD) mixed convection around a 
heat conducting horizontal circular cylinder placed at the center of a rectangular cavity 
along with joule heating has been carried out. Steady state heat transfer by laminar mixed 
convection has been studied numerically by solving the equations of mass, momentum and 
energy to determine the fluid flow and heat transfer characteristics in the cavity as a 
function of Richardson number, Hartmann number and the cavity aspect ratio. The results 
are presented in the form of average Nusselt number at the heated surface; average fluid 
temperature in the cavity and temperature at the cylinder center for the range of Richardson 
number, Hartmann number and aspect ratio. The streamlines and isotherms are also 
presented. It is found that the streamlines, isotherms, average Nusselt number, average fluid 
temperature and dimensionless temperature at the cylinder center strongly depend on the 
Richardson number, Hartmann number and the cavity aspect ratio. 

Keywords: Mixed convection; Finite element method; Cylinder diameter; Lid-driven cavity; 
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1. Introduction 
 
The fundamental problem of combined free and forced convection heat transfer in a 
closed cavity has received considerable attention from researchers. Such a problem is 
usual grouped under lid driven cavity problems. This problem is often encountered in 
industrial process and in nature. The modelling and simulation of crystal growth, glass 
production, food processing and nuclear reactors are common examples of current 
industrial applications, while convective thermal currents associated with the flow 
structure occurring in the lakes and reservoirs are classically cited as a natural 
phenomenon. 
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Moallemi and Jang [1] studied numerically mixed convective flow in a bottom heated 
square lid-driven cavity. They investigated the effect of Prandtl number on the flow and 
heat transfer process. They found that the effects of buoyancy are more pronounced for 
higher values of Prandtl number, and also derived a correlation for the average Nusselt 
number in terms of the Prandtl number, Reynolds number and Richardson number. Iwatsu 
et al. [2] made numerical simulations for the flow of a viscous thermally stratified fluid in 
a square cavity. The flow was driven by both the top lid and buoyancy. They investigated 
the possibility of a resonance structure-giving rise to the intensification of the flows in the 
interior and associated augmentation of convective heat transport. Later on, Iwatsu et al. 
[3] and Iwatsu and Hyun [4] conducted respectively two- and three-dimensional 
numerical simulation of mixed convection in a square cavity heated from the top moving 
wall. Prasad and Koseff [5] reported experimental results for mixed convection in deep 
lid-driven cavities heated from below. They observed that the heat transfer was rather 
insensitive to the Richardson number. Aydin [6] conducted a numerical study to 
investigate the transport mechanism of laminar mixed convection in a shear- and 
buoyancy- driven cavity. Two orientations of thermal boundary conditions at the cavity 
walls were considered to simulate the aiding and opposing buoyancy mechanisms. Aydin 
and Yang [7] numerically studied mixed convection heat transfer in a two-dimensional 
square cavity having an aspect ratio of 1. In their configuration the isothermal sidewalls of 
the cavity were moving downwards with uniform velocity while the top wall was 
adiabatic. A symmetrical isothermal heat source was placed at the other adiabatic bottom 
wall. They investigated the effects of Richardson number and the length of the heat source 
on the fluid flow and heat transfer. Mixed convection heat transfer in a two-dimensional 
rectangular cavity with constant heat flux from partially heated bottom wall while the 
isothermal sidewalls are moving in the vertical direction was numerically studied by Gau 
and Sharif [8]. Steady state two-dimensional mixed convection problem in a vertical two-
sided lid-driven differentially heated square cavity was investigated numerically by Oztop 
and Dagtekin [9]. They found that both Richardson number and direction of moving walls 
affect the fluid flow and the heat transfer in the cavity. Hossain and Gorla [10] 
investigated the effects of viscous dissipation on unsteady combined convective heat 
transfer to water near its density maximum in a rectangular cavity with isothermal wall. 
Two-dimensional flow in a two-sided lid-driven cavity containing a temperature gradient 
was investigated numerically by Luo and Yang [11]. 

In most studies found in the literature on mixed convection in a lid-driven cavity, no 
attention has been paid to the problem of MHD mixed convection in a lid-driven cavity 
containing a solid block. In the current investigation, the transport phenomena will be 
explored by utilizing several dimensionless parameters. These parameters are the 
Reynolds number, Hartmann number, Prandtl number, Richardson number Joule heating 
parameter and solid fluid thermal conductivity ratio. Here Richardson number is varied 
from 0.0 to 5.0 to simulate forced convection, mixed convection and free convection 
dominated flow in the cavity. The Hartmann number and cavity aspect ratio are 
considered from 0.0 to 50.0 and 0.5 to 2.0, respectively, while the values of Reynolds 
number, Prandtl number, Joule heating parameter and solid fluid thermal conductivity 
ratio are considered 100, 0.71, 1.0 and 5.0, respectively. 
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2. Problem Definition 
 
The physical model under consideration and coordinates chosen are depicted in Fig. 1.  A 
cartesian co-ordinate system is used with origin at the lower left corner of the 
computational domain. It is a two dimensional rectangular lid-driven cavity with a fixed 
amount of conducting solid material in the form of circular cylinder placed at the center of 
the cavity. The left wall of the cavity is allowed to move upward in its own plane at a 
constant velocity U0 and to be kept at a constant temperature Tc. Horizontal walls of the 
cavity are insulated while the right vertical wall is assumed to be heated isothermally at a 
constant temperature Th. In these figures, H and L are the height and length of the cavity 
respectively. Here the fluid is assumed to be electrically conducting, while walls of the 
cavity are considered to be electrically insulating. However, gravity acts in vertical 
directions and magnetic field is effective in the horizontal direction normal to the moving 
wall. The magnetic Re is assumed to be small so that the induced magnetic field is 
neglected and the Hall effects of magneto-hydrodynamics are to be negligible. All fluid 
physical properties are assumed to be constant except the density variation in the body 
force term of the momentum equation according to the Boussinesq approximation. In 
addition, the effect of Joule heating is considered, but pressure work and viscous 
dissipation are assumed to be negligible. 
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Fig. 1. Schematic of the problem with the domain and boundary conditions. 
 
3. Governing Equations with Boundary Conditions 
 
The electrically conducting fluids are assumed to be Newtonian fluids with constant fluid 
properties, except for the density in the buoyancy force term. Moreover, the fluid is 
considered to be laminar, incompressible, steady and two-dimensional. The electrically 
conducting fluids interact with an external horizontal uniform magnetic field of constant 
magnetic flux density B0. Assuming that the flow-induced magnetic field is very small 
compared to B0 and considering electrically insulated cavity walls. The electromagnetic 
force can be reduced to the damping factor 0B v−  ([15]), where v is the vertical velocity 
component. Thus the Lorentz force depends only on the velocity component perpendicular 
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to the magnetic field. Thus the governing equations for the problem can be expressed as 
follows:                            

0U V
X Y

∂ ∂
+ =

∂ ∂
                                                                                                                 (1) 
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For the solid cylinder, the energy equation in a dimensionless form becomes 

2 2

2 2
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Re Pr X Y
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                                                                                              (5) 

The dimensionless variables used to make the governing Eqs. (1) −(5) are defined as  
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are the Reynolds number, Grashof number, square of the Hartmann number, Prandtl 
number, Richardson number Joule heating parameter and solid fluid thermal conductivity 
ratio respectively. 

The dimensionless boundary conditions of the present problem under consideration 
can be written as follows: 

At the left wall: 0, 1, 0U V θ= = =  
At the heated right vertical wall: 0, 0, 1U V θ= = =  
At the cylinder surface: 0, 0U V= =  
At the top and bottom walls: 0, 0, 0U V N

θ∂= = =
∂

 

At the fluid-solid interface: s

fluid solid
K

N N
θθ ∂⎛ ⎞∂⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

where N is the non-dimensional distances either along X or Y direction acting normal 
to the surface. The average Nusselt number at the heated wall of the cavity based on 
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the conduction contribution may be expressed as 
1

0

Nu dY
X
θ∂

= −
∂∫ and the average 

temperature in the cavity is defined as /av d V Vθ θ= ∫ , where V is the cavity volume. 

4. Numerical Technique 
 
The numerical procedure used in this work is based on the Galerkin weighted residual 
method of finite element formulation. The application of this technique is well described 
by Taylor and Hood [16] and Dechaumphai [17]. In this method, the solution domain is 
discretized into finite element meshes, which are composed of triangular elements. Then 
the nonlinear governing partial differential equations i.e., mass, momentum and energy 
equations are transferred into a system of integral equations by applying Galerkin 
weighted residual method. The integration involved in each term of these equations is 
performed by using Gauss quadrature method. Then the nonlinear algebraic equations so 
obtained are modified by imposition of boundary conditions. These modified nonlinear 
equations are transferred into linear algebraic equations by using Newton’s method. 
Finally, these linear equations are solved by using Triangular Factorization method. More 
details are available in Rahman et al. [13, 14]  
 
4.1. Grid refinement check  
 
In order to determine the proper grid size for this study, a grid independence test are 
conducted with Re = 100, Ri = 1.0, K = 5.0, D = 0.2, Ha = 10.0, J = 1.0 and Pr = 0.71. 
The following five types of mesh are considered for the grid independence study. These 
grid densities are 24427 nodes, 3774 elements; 29867 nodes, 4640 elements; 37192 nodes, 
5814 elements; 38229 nodes, 5968 elements and 48073 nodes, 7524 elements. The 
extreme value of the average Nusselt number Nu, that relates to the heat transfer rate of 
the heated surface and average and average temperature θav of the fluid in the cavity are 
used as a sensitivity measure of the accuracy of the solution and are selected as the 
monitoring variables for the grid independence study. Table 1 shows the dependence of 
the quantities Nu and θav on the grid size and the computational time. Considering both 
the accuracy of the numerical values and the computational time, the following 
calculations are performed with 38229 nodes and 5968 elements grid system. 

 
Table 1. Grid sensitivity check at Re = 100, Ri = 1.0, K = 5.0, D = 0.2, Ha = 10.0, 
J = 1.0 and Pr = 0.71. 

 

Nodes 
(elements) 

24427 
(3774) 

29867 
(4640) 

37192 
(5814) 

38229 
(5968) 

48073 
(7524) 

Nu 1.022636 1.022643 1.022650 1.022651 1.022651 
θav 0.525566 0.525567 0.525566 0.525567 0.525567 

Time (s) 226.265 292.594 388.157 421.328 627.375 
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Table 2. Comparison of the present data with those of Chamkha [12] for Ha. 
 

Parameter 
Ha 

Present study 
Nu 

Chamkha [12] 
Nu 

0.0 2.206915 2.2692 
10.0 2.113196 2.1050 
20.0 1.820612 1.6472 
50.0 1.18616 0.9164 

 

4.2. Code validation  
 
For the purpose of code validation, the mixed convection problem in a lid driven cavity 
was tested for various values of Ha and Gr. The calculated average Nusselt number at the 
hot wall for the test cases were compared with the values calculated by Chamkha [12]. As 
shown in Tables 2 and 3, the calculated average Nusselt number agrees well with the 
values calculated by Chamkha [12].  
 

Table 3. Comparison of the present data with those of Chamkha [12] for Gr. 
 

Parameter  
Gr 

Present study  
Nu 

Chamkha [12] 
Nu 

102 1.029805 0.9819 

103 1.105932 1.0554 

104 1.523059 1.4604 

105 2.462188 2.3620 

 

5. Results and Discussion 
 
Results are presented for mixed convection inside an obstructed rectangular cavity where 
Ri has been varied from 0.0 to 5.0 by changing Gr while keeping Re fixed at 100. The 
Hartmann number and cavity aspect ratio are considered in the range from 0.0 to 50.0 and 
0.5 to 2.0,  respectively. 
 
5.1. Effect of Hartmann number 
 
The influence of Hartmann number (Ha) on the flow patterns at three different values of 
Ri is shown in Fig. 2, where AR = 1.0 is kept fixed. In the absence of the magnetic field 
(Ha = 0.0) and the natural convection effect (Ri = 0.0), the fluid flow is characterized by a 
primary rotating uni-cellular vortex of the size of the cavity generated by the movement of 
the left wall. Again for Ri =0.0 and the different higher values of Ha (10.0, 20.0 and 50.0), 
it is evident from  these figures that the size of the vortex remain unchanged,  but the core 
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Fig. 2. Streamlines for the different values of Hartmann number (Ha) and 
Richardson number (Ri), while AR = 1.0. 

 
of the vortex shifted towards the left top corner of the cavity with increasing Ha up to 20.0 
and the core divided into two parts located at the bottom and top corner near the left wall 
at the highest value of Ha = 50.0. When natural convection and forced convection become 
equally dominant, namely Ri = 1.0, the fluid flow is characterized by a clockwise rotating 
vortex generated by the movement of the left wall and two minor counter clockwise 
vortices generated by the buoyant force at the highest value of Ha = 50.0. As Ha 
decreases from 50.0 to 20.0, the minor counter clockwise vortices merge into a two 
cellular single one and become comparatively large, as a result the clockwise rotating 
vortex become smaller in size. Furthermore, the size of the clockwise vortex decreases 
and counter clockwise vortex increases with decreasing Ha at Ri = 1.0. This is because 
application of a transverse magnetic field has the tendency to slow down the movement of 
the buoyancy-induced flow in the cavity. Further when Ri = 5.0, the effect of natural 
convection is far more compared to the forced convection effect, consequently the size of 
the counter clockwise vortices at Ri = 5.0 are larger than that at Ri = 1.0. The 
corresponding effects of Hartmann number Ha on the isotherms is shown in the fig. 3 for 
the two aforesaid cases. From these figures it can be seen easily that the isotherms are 
almost parallel to the vertical walls for the highest value of Ha (Ha = 50.0) at the three 
values of Ri, indicating that most of the heat transfer process is carried out by conduction. 
However, some deviations in the conduction dominated isothermal lines are initiated near 
the left top surface of the cavity for the value of Ha = 20.0 at Ri = 0.0. The distortion of 
the isotherms near the left top surface of the cavity increases quickly with decreasing 
values of Ha at Ri = 0.0. From these figures, it is also be seen that the isothermal lines are 
dominated by conduction and mixed convection heat transfer in the cavity for different Ha 
at Ri = 1.0. Although the isotherms are almost parallel to the vertical surface for the 
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highest value of Ha at Ri = 5.0, but the isotherms are drastically changed with decreasing 
the values of Ha at Ri = 5.0. Moreover, the formation of the thermal boundary layer near 
the left cold wall is to be initiated here for the lower values of Ha at Ri = 5.0. This is 
owing to the dominating influence of the convective current in the cavity. 
 

Ri
 =

 0
.0

 

Ha = 10.0 Ha = 20.0 Ha = 0.0 Ha = 50.0 

Ri
 =

 5
.0

  

 

 

 

Ri
 =

1.
0 

 

 

 

 

 

 
 

Fig. 3. Isotherms for the different values of Hartmann number (Ha) and 
Richardson number (Ri), while AR = 1.0. 
 

 

 

 

 

 

 

 
Fig. 4. Effect of Hartmann number (Ha) on (i) average Nusselt numbers, (ii) average 
fluid temperature and (iii) temperature at the cylinder center, while AR = 1.0. 

 
The effects of Hartmann number on average Nusselt number (Nu) at the hot wall, 

average temperature (θav) of the fluid in the cavity and the temperature (θc) at the cylinder 
center along with Richardson number is shown in the Fig. 4, while AR = 1.0. From these 
figures, it is observed that the average Nusselt number (Nu) goes down very rapidly with 
increasing Ri in the forced convection dominated region and goes up gradually with 
increasing Ri in the free convection dominated region for the lower values of Ha (0.0, 
10.0 and 20.0). But the average Nusselt number (Nu) decreases mildly with increasing Ri 
for the highest value of Ha (Ha = 50.0). On the other hand, the values of Nu is the 
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uppermost in the pure forced convection (Ri = 0.0) at Ha = 0.0, in the mixed convection 
region (Ri = 1.0) at Ha = 50.0 and in the natural convection dominated region at Ha = 
20.0. However, the average temperature (θav) of the fluid in the cavity and temperature 
(θc) at the cylinder center increases sharply with Ri for the lower values of Ha (0.0, 10.0 
and 20.0) and increase very slowly with Ri at the highest value of Ha. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Check the  

 
5.2. Effect of cavity aspect ratio 
 
The influence of the cavity aspect ratio on the flow and thermal fields in the cavity are 
shown in the Figs. 5 to 7 at three convective regimes. The aspect ratio is the ratio of the 
length (L) and height (H). At Ri = 0.0 and AR = 0.5, it is seen that a two cellular vortex 
which we called primary vortex is generated due to the motion of the left wall. It is also 
seen from these figures that the vortex become uni-cellular and large in size with 
increasing AR at fixed Ri = 0.0. Next at Ri = 1.0 and AR = 0.5 it is observed that the 
primary vortex remain unchanged and two secondary vortices are developed at the top and 
bottom corner near the right wall due to the buoyancy effect. With the increase of AR at Ri 
= 1.0, it is seen that the size of the secondary vortex increases rapidly as a result, the size 
of the primary vortex decreases rapidly. Further, at Ri = 5.0 and all values of AR (AR = 
0.5, 1.0, 1.5 and 2.0), it is seen that the secondary vortex spreads and thereby squeezes the 
primary vortex, indicating a sign of supremacy of natural convection in the cavity. Further 
For Ri = 0.0 and the four cavity aspect ratios (AR = 0.5, 1.0, 1.5 and 2.0), the isothermal 
lines nearly follow the geometry of the right vertical surface and start to turn back towards 
the hot wall at the left top corner of the cavity due to the dominating influence of 
conduction and forced convection heat transfer. Now making a comparison of the 
isothermal lines for Ri = 1.0 and different AR that of for Ri = 0.0 and different AR no 
significant difference is found for the lower AR, but for higher AR the isothermal lines 

b a 
Fig. 6. (a) Streamlines and (b) Isotherms for 
various cavity aspect ratio and Ha = 10.0 at Ri 
= 1.0. 
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Fig. 5. (a) Streamlines and (b) Isotherms for various 
cavity aspect ratio and Ha = 10.0 at Ri = 0.0. 
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start to turn back towards the cold wall in the upper part of the cavity. Moreover at Ri = 
5.0 and lower AR = 0.5 the isothermal lines are almost parallel to the left vertical and start 
to turn back towards the cold wall at the right top corner of the cavity due to the 
dominating influence of convective heat transfer. On the other hand, at Ri = 5.0 and higher 
values of AR (1.0, 1.5 and 2.0) a significant convective distortion in the isothermal lines 
occurs due to the strong influence of the convective current as a result a concentrated 
thermal layer near the cold wall is developed. 
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Fig. 7. (a) Streamlines and (b) Isotherms for various 
cavity aspect ratio and Ha = 10.0 at Ri = 5.0. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 

Fig. 8. Effect of cavity aspect ratio on (i) average Nusselt number, (ii) average fluid temperature 
and (iii) temperature at the cylinder center for different diameters of the cylinder, while Ha = 10. 

 
The average Nusselt number (Nu) at the heat source, average temperature (θav) of the 

fluid in the cavity and the temperature (θc) at the cylinder center are plotted as a function 
of Richardson number in fig. 8 for the four values of AR = 0.5, 1.0 1.5 and 2.0. For each 
higher AR, the Nu-Ri profile shows two distinct zones depending on the Richardson 
number. The distribution of the average Nusselt number goes down sharply in the forced 
convection dominated region and goes up gradually in the free convection dominated 
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region for the higher values of AR (1.0, 1.5 and 2.0) with increasing Ri. On the other hand, 
for the lowest value of AR (AR = 0.5), the average Nusselt number decreases 
monotonically with increasing Ri. However, maximum average Nusselt number is found 
for the low AR = 0.5 at each Ri owing to the shortest distance between the hot and cold 
wall. From the figures 8 (ii) and 8 (iii), it is also seen that average temperature of the fluid 
in the cavity and the temperature at the cylinder center goes up sharply for the higher 
values of AR (1.0, 1.5 and 2.0) and gradually for lowest AR with increasing Ri. In 
addition, the values of the average temperature of the fluid in the cavity and the 
temperature at the cylinder center are lower for the higher values of AR in the forced 
convection dominated region, also for the lowest value of AR in the free convection 
dominated region. 
 
6. Conclusion 
 
From the above study, the following conclusions have been drawn: 
 

a. It is found that the flow behavior and the heat transfer characteristics inside the 
cavity are strongly depending upon the strength of the magnetic field. In the 
absence of the magnetic force, the convection-dominated zone is extended in the 
forced convection dominated region resulting better convective heat transfer 
performance. Increasing Hartmann number retards the fluid circulation causing the 
lower temperature gradients throughout the cavity in the forced convection 
dominated region. Therefore, major portion of the heat is transferred mainly by 
conduction. The inverse phenomena are observed in the free convection dominated 
area. However, lesser average fluid temperature and cylinder center temperature 
are observed for lower values of Ha (Ha = 10.0, 20.0) at the forced convection 
dominated area and for Ha = 50.0 at the free convection dominated area. 

b. Cavity aspect ratio has significant effects on the streamlines and isotherms 
distributions. Buoyancy-induced vortex in the streamlines and convective current 
in the isotherms increases with increasing aspect ratio of the cavity. Moreover, 
markedly different flow behaviors and heat transfer characteristics are observed 
among the three different flow regimes. On the other hand, average Nusselt 
number is always higher for lowest value of the cavity aspect ratio AR (AR = 0.5). 
The values of average temperature of the fluid in the cavity and temperature at the 
cylinder center are lower in the forced convection dominated region for the higher 
values of AR and in the free convection dominated region for the lowest value of 
AR. 
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