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Abstract 

 
We develop the calculation of free energy in a nematic phase for a model of spherical 
particles with the long-range anisotropic interaction from the van der Waals theory. We map 
the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transition. We 
discus how the topology of the phase diagrams changes upon varying the strengths of the 
isotropic and nematic interactions. 
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1.  Introduction 

 
In some systems, melting from the solid to the liquid is not a single transition, but occurs 
as a series of transitions into intermediate states liquid crystal phases. These phases are the 
states of aggregation that are intermediate between the solid and the liquid. As is well 
known, liquid crystals exhibit a rich variety of phases [1].  One of the simplest (and better 
understood) is the nematic phase which is caracterized by positional disorder and long-
range orientational order. The relation between the nature of the molecular interaction and 
the resulting phase diagram is the central theme of equilibrium statistical mechanics [2-4]. 
For systems with only pair interactions, to which we will restrict ourselves here, a small 
change in the range of the pair potential can already induce a qualitative change in the 
topology of the phase diagram [5, 6] This raises, therefore, the general question of how 
many topologically distinct phase diagrams can be generated from a given family of pair 
potentials. This question is of practical interest in situations where the pair potential can to 
some extent be prescribed (e.g., by chemical engineering techniques as is of current use in 
colloid science [7, 8]). The determination of phase diagram is, however, a very demanding 
task, and, therefore, the answer to the question raised is not generally available. In the 
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particular case of systems of spherical molecules with simple pair interaction (of the 
Lennard-Jones type, say) convincing evidence has nevertheless been obtained already that 
only three topologically distinct types of phase diagrams can be produced by such 
potential. If the amplitude of the pair potential is used as temperature scale and the range 
of the repulsions is used to define the density scale, then the family of potentials 
considered did depend only on one additional parameter, fixing the range of the attractions 
(relative to the range of the repulsions). The results could then be classified into three 
categories corresponding to long-ranged, intermediate-ranged, and short-ranged 
attractions with phase diagrams exhibiting, respectively, a gas-liquid critical point, no 
critical point, and an (isostructural) solid-solid critical point. The corresponding evidence 
is partly experimental [9, 10], partly numerical [11,12] and partly theoretical [13,14]. 
Phase diagrams of systems interacting via density dependent potentials, with a constant 
excluded volume, can exhibit two phase transitions: gas-liquid and liquid-liquid [15-17]. 
Systems which exhibit transition to a nematic phase have already been examined by many 
authors. Onsager [18] did show that particles of a sufficiently anisotropic shape, e.g. long 
rods or flats discs, form a nematic phase at high densities. Baus et al. [19] have used a 
density-functional theory for the study of the isotropic-nematic transition of hard 
ellipsoids. They found that the theory predicts a stable nematic phase, both for rodlike and 
disklike molecules, as a result of competition between the orientational entropy and the 
anisotropic excluded volume effects. This phase has been confirmed by computer 
simulations for hard ellipsoids [19, 20] spherocylinders [21-24] and for hard spheres [25]. 
Recently Mishra et al. [26, 27] have used the mean spherical approximation and the 
percus-Yevick integral equation theories to calculate the free energy functional for the 
nematic phase. A first-order isotropic-nematic transition is to be found in the liquid 
regime, although these authors do not present results for the phase diagram. They 
expressed the two-particle density distribution ρ  in terms of order parameters and solved 
the resulting equation for values of order parameters ranging from zero to some maximum 
value. They constructed a free energy functional and used it to determine the value of 
order parameters in the nematic phase by minimizing it.  

By computer simulation of a system of ellipsoids Phoung and Shmid [28] showed that 
in the nematic phase there are two qualitatively different contributions: one that preserves 
rotational invariance and other that breaks it and vanishes in the isotropic phase. Recently, 
Lomba and et al. [29] have used the Monte Carlo computer simulations to study the phase 
behaviour of hard sphere Maier-Saupe spins systems. According to this simulation this 
system undergoes a first-order isotropic-nematic transition continuously coupled to a gas-
liquid transition. 
      In our early extensive study of the phase behaviour of the Heisenberg model [30, 31] 
we have generalized the van der Waals theory for anisotropic interactions to study the 
phase behaviour of a system of particles with magnetic exchange interactions.  
In the present investigation we perform a similar study. We will use the nematic Maier-
Saupe interactions [3-5] and the extended van der Waals theory [30, 31] to calculate the 
free energy functional for the nematic phase and examine the isotropic-nematic transition. 
The value order parameter has been found by minimization of the reduced Helmholtz free 
energy functional in terms of order parameter. 
      This paper is organized as follows. In sec. 2 we introduce our model for the 
anisotropic potential. The free energy functional for the nematic phase will be computed 
in sec. 3 from a van der Waals approximation. The phase diagrams will be presented in 
sec. 4 while sec. 5 contains our discussions and conclusions. 
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2.  The Molecular Interactions 
 
We consider a system of N identical spherical molecules with an embedded anisotropy 
(such as an electric or magnetic moment). The position and orientation of these molecules 
will be specified, respectively, by the coordinates ( ) of their center of mass and the 

orientations ( ) of a unit spin variable ( ) placed at this center. The pair potential 
between two such molecules (say, i=1, 2) will be assumed to depend on their relative 
distance,

ir

is 12 =is

1r - 2r , and on their relative orientation, . The interaction potential between 

two such molecules, , will be taken to be of the form : 
2s1.s

1 2 1 2V(r ,r ,s .s )
 

)1 2 1 2 12 1 12 12 1 2( , ; . ) ( ) ( ) ( ; .HS MSV r r s s V r V r V r s s= + + ,                                                            (1) 
 
where the hard-sphere repulsion is given by )( 12rVHS
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where 12 12 /x r σ=   is the reduced distance and σ  which fixes the range of the repulsion, 
is the hard-sphere diameter. The second term  of Eq. (1) represents the isotropic 
(spin-independent) interactions and  the anisotropic (spin-dependent) 
interactions. For simplicity, the isotropic interaction will be represented by an inverse-
power attraction [30-32] 
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where 1 12 12 12( ) 0,  with (x =1)=1, xφ φ≥

1 0
as appropriate to anisotropic interactions of 

amplitude  ε ≥  and 
 

1
1 12 12( ) 1/( ) ,nx xφ =                                                                                                       (4) 

 

with  fixing the range of the attractions. As shown [5, 32, 33] elsewhere, with  
as the potential, the isotropic liquid is thermodynamically stable provided . 
Henceforth we will take  in which case (3)-(4) represents the standard van der 
Waals (vdW) potential 

1n 1 12( )V r
13 7.n< < 8

1 6,n =

 

1 12( ).vdWV V r=                                                                                                               (5) 
 

For the anisotropic interactions, we take the Mayer-Saupe nematic interaction 
 

                                                                                               (6) 2 12 2 1 2( ). ( . )MSV V r P s s=
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where 2
2 1 2 1 2

1( . ) [3( . ) -1]
2

P s s s  s=  is the Legendre polynomial of order 2 and  is the 

radial factor of amplitude 
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will likewise be taken to be of the inverse-power type        
 

2
2 12 12( ) 1/( )nx xφ =                                                                                                       (8) 

 
with a range fixed by . The final pair potential of our Maier-Saupe model can thus be 
written 

2n
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where 12 12 /x r σ= , while 1ε  fixes the energy scale and γ = ε2/ε1  measures the strength of 
the nematic interactions. The reduced potential V/ε1 thus depends on three positive 
parameters  { }1 2 ., ,n nγ  
 
3.  The free energy           
                                 
For a system of N molecules enclosed in a volume V at the equilibrium temperature T, the 
phase behaviour can be deduced from the Helmholtz free energy, F(N,V,T). In terms of 
the intensive property, f = F/N, we have for the (Helmholtz) free energy per 
particle, ( , )f f Tρ= , where ρ  is the number density, ρ =N/V. From ( , )f f Tρ= we can 
obtain the pressure, p= p( ρ ,T), and the chemical potential, ( , )Tμ μ ρ= , by using the 
following well known thermodynamic relations [2]: 

2  ;  ( ) ;fp ρ μ ρ
ρ ρ

∂ ∂
= =

∂ ∂
f                                                                                      (11) 

and, knowing p and μ  we can find the coexisting densities 1 2( , )ρ ρ of phase 1 and phase 
2 by solving, for each T, the following two-phase equilibrium conditions [2]: 

 

1 1 2 2( , ) ( , ) ,p T p Tρ ρ=                                                                                                (12) 

1 1 2 2( , ) ( , )T Tμ ρ μ ρ= ,                                                                                                 (13) 
where i , iP μ denote the value of P, μ  evaluated for phase i = (1, 2). Finally, when more 
than two phases are present for the same T, Eqs. (12) and (13) are solved for each pair of 
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coexisting phases, and the thermodynamically stable phase transitions are separated from 
the thermodynamically metastable phase transitions by constructing the convex envelope 
to the free energy with the aid of Maxwell's double tangent construction [34]. From the 
above it will be clear that the construction of a phase diagram for a system described by 
Eq. (9) is a very labor-intensive task. In order to make this possible we will confine 
ourselves here to a simple van der Waals approximation for ( , )f tρ . We do not, of course, 
expect this approximation to yield quantitatively correct results. 

As is well known, in the vdW-approximation the (hard-sphere) repulsions are 
described within a free-volume approximation while the attractions are treated within a 
mean field approximation [5, 33]. 

The free energy, F, of a system with pair-potential of the form defined by Eq. (9) reads 
 
 

1 1 2 2 2 1 2 1 2 1 12 2 12 2 1 2     , )]s s. .  
1 ( , ; ) [ ( ) (
2

( )RF F dr ds dr ds r r r s s V V r Pr= + ∫ ∫ ∫ ∫ +                           (14) 

where 
RF  is the hard-sphere free energy and 2 1 2( , ;r r 1 2. )s sρ denotes the pair-density. 

Within the mean field approximation the latter is factorized as, 
 

2 1 2 1 2 1 1 1 2 2 2( , ; . ) ( , ) ( , ),r r s s r s r sρ ρ ρ=  
 

where 1( , )r sρ  is the one-particle density. Because Eq. (9) does not couple the position 
and angular variables we can likewise factorize 1 1 1( , )r sρ as   

1( , ) ( ) ( ),r s r h sρ ρ=                                                                                                  (15) 
where ( )rρ is the center of mass density normalized to the average density   ρ 
 

1 ( )dr r
V

ρ ρ=∫                                                                                                             (16)  
 

and  h(s) is the angular distribution of the spin variable normalized to one [30, 31] 
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with ,θ φ  being the polar angles of the unit vector s  referred to a laboratory fixed 
coordinate system. Using Eqs. (15), and (17) the reduced free energy of (14) becomes 
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                          (19)                            

 
where the radial factors can be treated as proposed in [32, 33].  As the angular factor of 
Eq. (19), we will assume the system to have uniaxial symmetry around the direction n, 
with , of some infinitesimal external (magnetic) field so that 2 1n =
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,

( ) ( . ) ( ),h s h s n h u≡ ≡                                                                                                   (20) 
 

where . cos( ) ( )s n h uθ= ≡ since we can always put n in the direction of the polar z axis. 
The angular average < >, of any axially symmetric function   g(u) of  u then becomes  
 

1
 ( ) ( ) ( ) ( )  ( ) ( ),

2
 g dsh s g s dsh u g u du h u g u< > = = =∫ ∫ ∫                                    (21) 

where we used Eqs. (18) and (20).  
The hard-sphere free-energy, HSF , can be approximated by (see [5,6,30]) 
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where the first term is the ideal gas contribution, Λ being the thermal de Broglie 
wavelength, ρ = N/V  the average density. The second represents the orientational entropy 
and the last term represents the free-volume entropy due to the hard-sphere repulsions of 
Eq. (2). In particular, we have (see [33]) 

0

( ) (1 )ρα ρ
ρ

= −                                                                                                           (

for a 

23) 

fluid phase, with  3( ) 0.495
6 cp
π ρ σ =  being the packing fraction above which the fluid 

becomes unstable. The second and third terms of Eq.(19), which represents the mean-field 

                             (24) 
 

re γ = ε2/ε1, εl(l = 1,2) are the amplitudes defined in Eqs. (3) and  (7) and 

exchange energy contribution of the isotropic and nematic interactions defined by Eqs. (3) 
and (7), becomes (see [30]) 
 
 

2
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ith  12( )l xφw  defined by Eq. (3) and (7). 

luid phFor a f ase, ( ) ,rρ ρ≡  Eq. (25) reduces to the cohesion energy 
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hich, for the inverse power potentials of sec. 2, becomes 
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By using Eqs. (22) and (24), the reduced free energy of Eq. (19) becomes now 
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1
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 t= kBT/ε1  is the reduced temperature T, and where  1ε  is the amplitude of the isotropic 

uilibrium distribution , we minimize Eq. (28) with 
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here  c is a constant. By using Eq. (28), Eq. (29) becomes w
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fixes the normalisation [ ]ln ( )C N q= ; D  denotes the Dawson function such that: 
x

2 2

1
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and  the order parameter q is determined self-consistently by Eq. (31) or, equivalently, 
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By using Eqs. (32), (33), (35) and (36) we can rewrite the term [ ]
1

0 0
1

( ) ln ( )
2
t duh u h u

−
∫  in 

(28)   as:       
     

2
22 lnm t N qγφ − ( )

2

  ,                                                                                                (37)        
 

Our total reduced free energy defined in (28) becomes now: 
 

3
1 2ln( ) 1 ln ( ) ln ( )f t t m tρ α ρ φ γφ⎡ ⎤= Λ − − − + −⎣ ⎦ N q                                             (38) 

with  22 .q m
t
γ φ=   N(q)  and  m are determined,  respectively, from Eqs. (33) and (36). 

       In the following we will choose m as a new order parameter instead of q because q is 
unbounded  ( 0 q≤ ≤ ∞ ) whereas  m  is bounded  (0 1).m≤ ≤  
According to the values of  m  we have then either isotropic phases  (m =0)  or nematic 
phases ( 0 . )m ≠

In order to determine the equation of the borderline which separates the two phases, 
we will perform a study similar to the one used in [30]. 

Before doing this let us to give the behaviour of the order parameter m(q) when  
: in this case Eq. (33) becomes 0q →

2 38( 0) (1
10 15
q qN q → ≅ + + )                                                                                      (39)                                

 
Then, Eq. (36) becomes 

 
27( 0)

5 30
q qm q → ≅ − .                                                                                             (40) 

 
By using Eq. (35), Eq. (40) can be rewritten as 

 

                 22 14( 1)
5 15

mγ γ
∗

∗− =                                                                                           (41) 

 where 2 .
t

γφγ ∗ =    Then 5   as   0
2

qγ ∗ → → . 

By plotting the curves, q versus γ ∗ or γ ∗  versus  q  with  γ* = q/2m and  m(q)  given 
by Eq. (36), we see that this curve can be divided into two branches:  N' and N  (see Fig. 
2a,b). The  N' branch is the unphysical branch because q is a decreasing function of γ ∗ . 
Furthermore, on this branch the reduced free-energy per unit volume fη  is a concave 
function of the reduced density η = πρσ3/6 (see Fig. 2c). The N branch, however, is the 
physical branch because, in addition to the fact that q is an increasing function of γ ∗ , the 
reduced free-energy per unit volume fη is a convex function of η  (see Fig. 2c).  
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Fig. 1. Graphical representation of the self-consistency Eq. (36), indicating that a nematic phase can exist only 
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Fig.2. (a, b)  Graphical representations of the equation, 
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Fig. 2c.  Isotropic (I), unphysical nematic (N´) and physical nematic (N) branches of the reduced free energy per 
unit volume η f  versus the reduced density , for  Γ* = γ (n1-3)/(n2-3) = 1.4 and   t = 0.7. 
 

From Fig. 1b we see that the curve is discontinuous, i.e, the parameters q or m are not 
continuous. The point   ( 1  is determined by solving the equation .51,  2.24qγ ∗ = = )
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( ) 0q
q

γ ∗∂
=

∂
                                                                                                                   (42) 

with  
2
q
m

γ ∗ =  and  m  given by Eq. (36). 

 
Therefore, the nematic phase can only occur for q larger than 1.51 or γ ∗  larger than 

2.24.  In other words, the isotropic-nematic transition is always of the first-order type 
because the order parameter q has to jump from q to   1.51.q ≥
 
4.  Phase Diagrams 
 
From a system of number density ρ  and reduced temperature t =kBT/ε1, Eqs. (35), (36) 
and (38) yield  ( , ),f f tρ=  and from f we obtain the pressure p and chemical potential  
μ  using the well-known thermodynamic relations 

 

2
1    ,    = 1

f Pp ε ρ μ ε f
ρ ρ

∂
=

∂
+                                                                                      (43) 

 

We will consider the competition between two types of uniform fluid phases: the 
isotropic (I) fluid phase (phase 1) without orientational order (m=0), and the nematic (N) 
fluid phase (phase 2) for which the spin variables are, on average, aligned along some 
director ( ).  We will also use the packing fraction η = πρσ3/6 as the reduced 

nsity variable. The two-phase equilibrium conditions can then be written 
0m ≠

de
    

      1 1 2 2( , ) ( , ),P t P tρ ρ=                                                                                                  (44) 
     1 1 2 2( , ) ( , ),t tμ ρ μ ρ=                                                                                                  (45) 
 

where the indices 1,  2  refer to phases  1 and  2, respectively. Eqs. (44) and (45) are 
equivalent to the double tangent construction on the free energies obtained from Eqs. (35), 
(36) and (38). When more then one transition is possible, the equilibrium transition is 
found by constructing the convex envelope to the free energies. From Eqs. (38) and (43) 
the pressure of the fluid phase can be written as 

 2
1 2

1 ( )
p t mφ γφ

ρε α ρ
= − −                                                                                           (46) 

 
where  ( )α ρ  is given by (23) and  by (27). The orientational order parameter, ( 1,2)l lφ =

( , )t ,m m ρ=  is obtained by solving Eq. (35), yielding ( , )p p tρ=  and  ( , ).tμ μ ρ=  
From Eq. (46) we obtain the critical point. The coordinates ( , )c ct η of the critical point are 
given by (see [5, 6]): 
 

 0
c

0

32    ;    
3( 3) 3c

c

t
n

η
η

η
=

−
=                                                                                      (47)   
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There is no tricritical point because the isotropic-nematic transition is always first-
order. 

In the isotropic phase  m=0, Eq. (46) embodies the standard liquid-gas transition, with 
terminates in the vdW critical point of (47). Combining this isotropic gas (IG)-isotropic 
liquid (IL) transition with the isotropic fluid (IF)-nematic fluid (NF) transition, one 
obtains the phase diagram of the fluid phases in the  tη −  plane.  

By using the following reduced thermodynamic variables: 
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we remark that this phase diagram does not depend on the three parameters  
{ }1 2, ,n nγ separately but only on the combination Γ*= γ(n1-3)/(n2-3) and not on the 

various strength ( lε ) and range  ( ) parameters separately. In other words, the phase 
behaviour is monitored by the relative strengths of the potentials, γ = ε2/ε1, and not by the 
range ( ) of the potentials, i.e., changing ( ) at constant ε1/(n1-3) has no effect on the 
phase behaviour. 
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Fig. 3. The two topologically distinct types of phase diagrams in the reduced temperature 
( 0/Bt k T ε= )-reduced density (η = πρσ3/6) plane as obtained from the energy (38); (a) Γ* = 1, 
(b) Γ* = 1.4. 
 
5.  Results and conclusions 

 
We have studied the phase diagram of a system of particles interacting via both nematic 
and isotropic interactions by using the extended vdW theory [30, 31].  As is well known, 
in van der Waals theory the free energy is written as the sum of a free- volume entropy 
term describing the repulsions and a mean-field energy term describing the attractions [5, 
6]. This theory is simple and flexible. It is also fairly realistic since the resulting phase 
diagrams mimic very closely those obtained from more sophisticated theories  and 
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simulations, whenever available [26, 27, 29]. On this basis we have found that the 
topology of the phase diagrams depends on the value of Γ*= γ(n1-3)/(n2-3).  According to 
the value of Γ*, there are two topologically distinct types of phase diagrams (see Fig. 3). 
For weakly anisotropic fluids, 0<Γ*< 1.0863 all the phase diagrams have IG-IL and IL-
NL transition (Fig. 3a). For temperatures below the triple point temperature  t  there is a 
single first-order transition, namely IG-NL transition. Above tt  there are two first-order 
transitions, namely a IG –IL transition ending at the critical point  (filled square) of (47) 
and a first-order  IL-NL  transition. For ct  there is only a first-order IF-NF transition. 
For stronger nematic anisotropies, Γ*>1.0863 the critical point becomes metastable and 
the phase diagram contains only a IF-NF transition (see Fig. 3.b). From this we conclude 
that there is no difficulty in stabilizing the nematic liquid phase over a large domain of the 
temperature-density plane.  

t

t>

Lastly we would like to emphasize that the theory developed here can be extended to 
other ordered phases. The free energy described here will allow us to study various 
phenomena of ordered phases. Our work on freezing of simple liquids into crystalline 
solids is in progress and the results will be reported in near future [35]. 
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