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Abstract 

 

This paper reports the effect of conduction variation of free convection flow along a 

vertical flat plate on magnetohydrodynamic (MHD) with thermal conductivity. The 

governing equations with associated boundary conditions reduce to local non-similarity 

boundary layer equations for this phenomenon are converted to dimensionless forms 

using a suitable transformation. The transformed non-linear equations are then solved 

using the implicit finite difference method together with Keller-box technique. 

Numerical results of the velocity and temperature profiles, skin friction and surface 

temperature profiles for different values of the magnetic parameter, the thermal 

conductivity variation parameter, the Prandtl number and the conduction variation 

parameters are presented graphically. Detailed discussion is given for the effect of the 

aforementioned parameters. Opposite scenario is found in skin friction and surface 

temperature for the thermal conductivity variation parameter. Significant effect is found 

in skin friction and surface temperature for conduction variation parameter. 
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1. Introduction 

 

Electrically conducting fluid flow in presence of the effect of temperature dependent 

thermal conductivity flow and heat conduction problems are important from the 
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technical point of view and such types of problems have received much attention by 

many researchers. 

Model studies of the free convection flows have earned reputations because of 

their applications in geophysical, geothermal and nuclear engineering problems. 

Miyamoto et al. [1] studied the effect of axial heat conduction in a vertical flat plate on 

free convection heat transfer. Pozzi and Lupo [2] investigated the coupling of 

conduction with laminar convection along a flat plate. Mamun [3] studied the effects 

of conduction and convection on magnetohydrodynamic (MHD) flow with and without 

viscous dissipation from a vertical flat plate. Hossain [4] analyzed the viscous and 

Joule heating effects on MHD free convection flow with variable plate temperature. 

Rahman et al. [5] investigated the effects of temperature dependent thermal 

conductivity on MHD free convection flow along a vertical flat plate with heat 

conduction. Nasrin and Alim [6] studied the combined effects of viscous dissipation 

and temperature dependent thermal conductivity on MHD free convection flow with 

conduction and joule heating along a vertical flat plate. Alim et al. [7] investigated 

Joule heating effect on the coupling of conduction with MHD free convection flow 

from a vertical flat plate. Chowdhury and Islam [12] analyzed MHD free convection 

flow of visco-elastic fluid past an infinite porous plate. Alam et al. [13] studied 

viscous dissipation effects on MHD natural convection flow over a sphere in the 

presence of heat generation. Islam et al. [14] investigated effects of conduction 

variation on natural convection flow along a vertical flat plate. Islam et al. [15] studied 

the Eeffects of thermal conductivity of fluid on free convection flow along a vertical 

flat plate with transverse conduction. Islam et al. [16] analyzed the effects of 

conduction variation on MHD natural convection flow along a vertical flat plate. 

The present study is to incorporate the idea of the effects of conduction variation 

on MHD natural convection boundary layer flow along a vertical flat plate with 

thermal conductivity. 

 

2. Mathematical Formulation of the Problem 

 

At first we consider a steady two-dimensional laminar natural convection flow of an 

electrically conducting, viscous and incompressible fluid along a vertical flat plate of 

length l and thickness b (Fig. 1). It is assumed that the temperature at the outer surface 

of the plate is maintained at a constant temperature Tb, where Tb > T, the ambient 

temperature of the fluid. In this work y -axis i.e. normal direction to the surface and 

x -axis is taken along the flat plate. The coordinate system and the configuration are 

shown in Fig. 1. 
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Fig. 1. Physical model and coordinate system. 

 

The governing equations of such laminar flow with viscous dissipation and also 

thermal conductivity variation along a vertical flat plate under the Boussinesq 

approximations )](1[   TTb , where 
  and T  are the density and 

temperature respectively outside the boundary layer. For the present problem we see 

the equations of continuity, momentum and energy are as below  
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Here   is coefficient of volume expansion. The temperature dependent thermal 

conductivity, which is used by Rahman [5] as follows )](1[   TT ff  (4) 
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The non-dimensional governing equations and boundary conditions can be obtained 

from equations (1) - (3) using the following dimensionless quantities 
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where l  is the length of the plate, Gr is the Grashof number,   is the dimensionless 

temperature. 

Now from equations (1)-(3), we get using the following dimensionless equations 
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is the conduction parameter. The described problem is governed 

by the coupling parameter P.  

To solve the equations (8) and (9) subject to the boundary conditions (10) the 

following transformations are proposed by Merkin and Pop [8] 
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here  is the similarity variable and  is the non-dimensional stream function which 

satisfies the continuity equation and is related to the velocity components in the usual 

way as 
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Moreover, h (x,) represents the non-dimensional temperature. The momentum and 

energy equations are transformed for the new co-ordinate system. At first, the velocity 

components are expressed in terms of the new variables for this transformation. Now 

the equations take the following forms  
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where prime denotes partial differentiation with respect to . The boundary conditions 

as mentioned in equation (10) then take the following form 
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From the process of numerical computation, in practical point of view, it is 

important to calculate the values of the surface shear stress in terms of the skin friction 

coefficient. This can be written in the non-dimensional form as Molla et al. [9] 
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where 
0[ ( ) ]w yu y      is the shearing stress. Using the new variables 

described in (6), the local skin friction coefficient can be written as  
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In practical point of view, it is important to calculate the values of the surface 

temperature. The numerical values of the surface temperature are obtained from the 

relation. This can written in the non-dimensional form as 
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3. Numerical Method of Solution  

This paper reports the effect of conduction variation on electrically conducting fluid in 

natural convection flow for temperature dependent thermal conductivity along a 
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vertical flat plate with MHD. The set of equations (12) and (13) together with the 

boundary conditions (14) are solved by applying implicit finite difference method with 

Keller-box elimination scheme [10], which is well documented by Cebeci and 

Bradshaw [11] and widely used by Keller et al. [4]. 

4. Results and Discussion 

The main objective of the present study is to analyze the effect of conduction variation 

due to temperature dependent thermal conductivity on free convective flow along a 

vertical flat plate in presence of strong magnetic field. In this simulation the values of 

the Prandtl number Pr are considered to be 0.733, 1.00, 1.50, 2.00 and 2.50 that 

corresponds to hydrogen, steam, water, methyl chloride and sulfur dioxide 

respectively. 

The velocity and the temperature profiles obtained from the solutions of equations 

(12) and (13) are depicted in Figs. 2-5. Also the local skin friction and the surface 

temperature obtained from the solutions of equations (16) and (17) are depicted in 

Figs. 6-9. Numerical computation are carried out for a range of magnetic parameter M 

= 0.01, 0.21, 0.41, 0.61, 0.81, thermal conductivity variation parameter  = 0.01, 0.11, 

0.21, 0.31, 0.41 and conduction variation parameter P = 0.30, 0.60, 0.80, 1.00, 1.20. 

The effect of magnetic parameter M on the velocity and temperature profiles 

against η within the boundary layer with  = 0.01, Pr = 0.733 and P = 0.30 are shown 

in Figs. 2(a) and 2(b), respectively. It is seen from Fig. 2(a) that the velocity decreases 

within the boundary layer with the increasing values of M. From Fig. 2(b) it is 

observed that the temperature increases within the boundary layer with the increasing 

values of M. It means that the velocity boundary layer and the thermal boundary layer 

thickness expand for large values of M. 

The effect of thermal conductivity variation parameter   on the velocity and 

temperature profiles against η within the boundary layer with M =0.01, Pr = 0.733 and 

P = 0.30 are shown in Figs. 3(a) and 3(b), respectively. It is observed that the velocity 

and the temperature increase within the boundary layer with the increasing values of 

 . It means that the velocity boundary layer and the thermal boundary layer thickness 

expand for large values of . 

Figs. 4(a) and 4(b) illustrate the velocity and temperature profiles against η for 

different values of Prandtl number Pr with M = 0.01,  = 0.01 and P = 0.30. From Fig. 

4(a), it can be observed that the velocity decreases as well as its position moves toward 

the interface with the increasing Pr. From Fig. 4(b), it is seen that the temperature 

profiles shift downward with the increasing values of Pr. Velocity and temperature 

boundary layer both are much more clear and decrease for large Prandtl number. 

Figs. 5(a) and 5(b) describe the velocity and temperature profiles against η for 

different values of conduction variation parameter P with M = 0.01,  = 0.01 and Pr = 

0.733. From Fig. 5(a), it can be observed that the velocity decreases as well as its 

position moves outward the interface with the increasing values of P. From Fig. 5(b), it 
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is seen that the temperature profiles also the same as increase within the boundary 

layer. It means that the velocity boundary layer and the thermal boundary layer 

thickness increase for large values of P from 0.30 to 1.20. There is an inverse trend 

visible in velocity profiles. 

Figs. 6(a) and 6(b) illustrate the effect of the magnetic parameter on the local skin 

friction coefficient Cfx and surface temperature distribution ( ,0)x  against x with  = 

0.01, Pr = 0.733 and P = 0.30. It is seen from Fig. 6(a) that the skin friction increases 

monotonically along the downward direction of the plate for a particular value of M. It 

is also seen that the local skin friction coefficient decreases for the increasing values of 

M. From Fig. 6(b), it can be seen that the surface temperature increases due to the 

increasing value along the positive x direction for a particular M. It is also observed 

that the surface temperature decreases for increasing values of M. This means that 

there is an inverse case exists between skin friction and surface temperature which is 

remarkable. 

Figs. 7(a) and 7(b) illustrate the effect of the thermal conductivity variation 

parameter on the skin friction coefficient and surface temperature against x with M = 

0.01, Pr = 0.733 and P = 0.30. It is seen from Fig. 7(a) that the skin friction increases 

monotonically along the upward direction of the plate for a particular value of . It is 

also seen that the local skin friction coefficient increases for the increasing values of . 

From Fig. 7(b), it can be seen that the surface temperature increases due to the 

increasing value along the positive x direction for a particular . We observed that both 

skin friction and surface temperature profiles are opposite. 

Figs. 8(a) and 8(b) deal with the effect of Prandtl number Pr on the local skin 

friction coefficient and surface temperature against x with M = 0.01,  = 0.01 and P = 

0.30. It can be observed from Fig. 8(a) that the skin friction coefficient increases 

monotonically along x axis for a particular value of Pr. It can also be noted that the 

skin friction coefficient decreases for the increasing values of Pr. From Fig. 8(b), it 

can be seen that the surface temperature distribution decreases due to the increases 

along the positive x direction for a particular value of Pr. 

The variation of the skin friction and surface temperature for different values of P 

with M = 0.01,  = 0.01, and Pr = 0.733 at different positions are illustrated in Figs. 

9(a) and 9(b), respectively. In Fig. 9(a) we see that the skin friction decreases for 

increasing values of P. It can also be noted from Fig. 9(a) that the skin friction 

increases monotonically along x axis for a particular value of P. Again Fig. 9(b) shows 

that the surface temperature decreases for increasing values of P. We observe from the 

profiles of skin friction and surface temperature that they are opposite.  
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Fig. 2(a). Velocity and (b) temperature profiles against η for different values of M with  = 0.01, 

Pr = 0.733 and P = 0.30. 
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Fig. 3(a). Velocity and (b) temperature profiles against η for different values of   with M = 0.01 

Pr =0.733 and P = 0.30. 
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Fig. 4(a). Velocity and (b) temperature profiles against η for different values of Pr with M = 

0.01,  = 0.01 and P = 0.30. 
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Fig. 5(a). Velocity and (b) temperature profiles against η for different values of P with M = 

0.01,  = 0.01 and Pr =0.733. 
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Fig. 6(a). Local skin friction coefficient and (b) surface temperature distribution against x for 

different values of M with  = 0.01, Pr = 0.733 and P = 0.30. 
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Fig. 7(a). Local skin friction coefficient and (b) surface temperature distribution against x for 

different values of   with M = 0.01, Pr =0.733 and P = 0.30. 
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Fig. 8(a). Local skin friction and (b) surface temperature against x for different values of Pr with 

M = 0.01,  = 0.01 and P = 0.30. 
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Fig. 9(a). Local skin friction and (b) surface temperature against x for different values of P with 

M = 0.01,  = 0.01 and Pr = 0.733. 

 

5. Conclusion 

The effects of conduction variation on MHD free convection boundary layer flow 

along a vertical flat plate with temperature dependent thermal conductivity have been 

studied in this paper. From the present investigation the following conclusions may be 

drawn 

The velocity within the boundary layer increases for decreasing values of M, Pr, P 

and for increasing values of . There is an inverse trend is found in velocity profile 

for P which is remarkable. 

The temperature within the boundary layer increases for increasing values of M,  

and decreases for increasing values of Pr, P. 

The local skin friction coefficient decreases for the increasing values of M, Pr, P 

and increases for increasing values of  . 

An increase in the values of  and Pr leads to an increase in surface temperature. 

On the other hand, this decreases for increasing values of M, P. 
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Nomenclature  

b Plate thickness 

Cfx            Local skin friction coefficient 

Cp        Specific heat at constant pressure 

F         Dimensionless stream function 

g         Acceleration due to gravity 

Gr       Grashof number 

h         Dimensionless temperature 

l          Length of the plate 

M        Magnetic parameter 

P         Conduction variation parameter 

Pr       Prandtl number 

T        Temperature of the interface 

Tb       Temperature at outside surface of the 

plate 

Tf        Temperature of the fluid 

T       Temperature of the ambient fluid 

u       Velocity component in x- direction 

v        Velocity component in y- direction 

u         Dimensionless velocity component in 

x-direction 

v         Dimensionless velocity component in 

y-direction 

x       Cartesian co-ordinates 

y       Cartesian co-ordinates 

x        Dimensionless Cartesian co-ordinates 

y        Dimensionless Cartesian co-ordinates 

Greek Symbols 

 

  Co-efficient of thermal 

expansion 

     Thermal conductivity variation 

parameter 

    Vector differential operator 

    Similarity variable 

  Thermal conductivity of the 

ambient fluid 

s   Thermal conductivity of the 

solid 

f   Thermal conductivity of the 

fluid 

       Viscosity of the fluid 

e      Magnetic permeability of the 

fluid 

       Kinematic viscosity 

   Density of the fluid inside the 

boundary layer 

      Electrical conductivity of the 

fluid 

w     Shearing stress 

Ψ      Stream function 
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