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Abstract 

 

The main purpose of this paper is to approximate the solution of the steady tensorial 

transport equations using discontinuous Galerkin finite element method implemented 

with the finite element solver FreeFem++. After introducing the formulations of the 

tensorial transport equations, the analysis of its componentwise equations, i.e., 

advection-reaction equations have been discussed. Discretizing the transport problem 

using discontinuous Galerkin finite element method, the iterative fixed-point method is 

used to obtain the solutions. We present the numerical simulations of two-dimensional 

benchmark problem and observe the instability of elasticity. All the simulations are done 

using the script developed in FreeFem++.  
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1. Introduction 

 

This paper aims to approximate the solution of the steady tensorial transport equations 

using discontinuous Galerkin (DG) finite element method. The unknown is the 

viscoelastic extra stress tensor σ. An iterative method based on the application of a 

fixed point algorithm is implemented to solve the steady tensorial transport equations 

which are discretized using the discontinuous Galerkin finite element. The finite 

element solver FreeFem++ is used to obtain the solution with the implementation of 

the above method. The discontinuous elements  are used to discretize the 

transport problem, and to obtain the numerical solutions of the corresponding algebraic 

system of the transport equations. The numerical results are obtained both 
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computationally and graphically by the implementation of DG finite element method 

in FreeFem++ [1].  

I first introduce the steady tensorial transport equation which is the non-linear 

system of partial differential equations of hyperbolic type. We split it into component-

wise scalar equation which can be identified as the hyperbolic equations known as 

advection-reaction equations. We briefly discuss the mathematical and numerical 

analysis, and analyze the approach problem in the context of discontinuous Galerkin 

finite element method [2-4]. An auxiliary problem which is in the form of transport 

problem with known vector field for velocity is considered. Using the variational 

formulation of discrete transport equations, the dimensionless transport problem is 

written in terms of components as a system of three scalar transport equations 

(adevection-reaction equations). Then an iterative method is used to solve the system. 

The linear system is solved using the default solver sparse-solver [1]. All the 

numerical simulations are implemented with our own script developed in FreeFem++. 

Finally, we draw some conclusions.  

 

2. Nomenclature 

 

Before discussing the mathematical analysis of tensorial transport equations with 

boundary conditions and variational formulation, we introduce some notations of 

different function spaces in the following table, details of  which can be found in [5,6].  

 

)(pL  
The Lebesgue spaces 

Wm,p(Ω) where m ≥ 0 be an 

integer and 1 ≤ p ≤ ∞ 

The standard Sobolev spaces 

pm,


 
Norms of Wm,p(Ω) 

)(mH  
Wm,p(Ω), for p=2 

)(pL  )(,0 pW  

 

3. Mathematical Analysis for Steady Transport Problem 

 

Let Ω is a bounded, open and connected Lipschitz domain of  In this 

domain, we consider the steady tensorial transport equation which is of hyperbolic 

type, defined by 

 

                                           gσuσ                                                                       (1) 

 

where λ ϵ L
∞
 (Ω), u ϵ L

∞
 (Ω) and g ϵ L

∞
 (Ω) are given. 

 

In order to close this hyperbolic system, and to obtain a well-posed problem, the 

above equation need to be supplemented by the boundary conditions on inflow 
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sections of the boundary, according to the hyperbolic partial differential equations 

(PDE) theory. 

Componentwise, the equation (1) can be written as  

 
           

0,
11

2,1,,













jijiji

ijjiji

g

jig

u

u                                                                 (2) 

Without loss of generality we can take λ ≠ 0 because if λ = 0, we have σ = g and g is 

given.  

Assuming μ = 1/λ, the componentwise equation is scalar and can be identified as 

the hyperbolic equation known as advection-reaction equation 

                                    

              h  u                                                                                                 (3) 

 

3.1.  Advection-reaction equation 

 

I consider the steady advection-reaction equation with inflow homogeneous boundary 

condition  

    







on

inh

0u

u 

                                                                               (4) 

where )( L  is the reaction coefficient, )( 
Lu  is the advective velocity field, 

)(2 Lh  is the source term, ω is the unknown scalar function and 
 denotes the 

inflow part of the boundary of Ω, namely 

 
}0)().(:{  

xnxux                                                                                        (5) 

 

with n = (n
1
, -----n

d
)

t
 be a unit outward normal to  . 

 

In the similar way, we define the outflow part of   as  

}0)().(:{  
xnxux                                                                          (6) 

and the interior of the set }0)().(:{  xnxux  as  

                                  ).(\0              
 

I assume that the inflow and outflow boundaries are well separated, i.e.,  

                                 .0),(  dist  
 

I assume the following additional hypothesis on μ: 

          there exists μ0 such that  

  
...0)(.

2

1
)( 0  inea xux

                                                                       (7) 
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To obtain the weak formulation of (4) I introduce the graph space 

     )()}(:)({ 222  LLLW  u                                                (8) 

Lemma 1: 

 

W is a Hilbert space with respect to the graph norm 

                    
.

)()( 22 


LLW
 u

                
Here W is dense in )(2 L  and )(1 H  is subspace of W. 

 

Lesaint [4] guarantees the solution of (4) in the following results that he proves. The 

following theorem guarantees the existence and uniqueness of the solution of the 

approach problem.  

 

Theorem 1:  

 

Assume that )( L and )(2 Lh . Then problem (4) has a unique strong solution 

Wu .      

To specify mathematically the meaning of the boundary condition, we need to define 

the trace on   of function in W. For that, we introduce the real-valued functions 

which are square integrable with respect to the measure dsn.u , where ds is the 

Lebesgue measure on  , i.e.,  

 

                         
}..:{|).|;( 22  



dsvonmeasurableisvL nunu

 
Introducing the following bilinear form which is continuous and L

2
–coercive in W x 

W: 

       
Wvvvvva  



,)(
2

1
)(),(  nunuu

                       (9) 
We obtain the following variational formulation of the advective-reaction problem: 

                             







Wvvhva

thatsuchWFind

),(),(



                                               (10) 

 

Problem (10) is well-posed which can be proved as the consequence of the Lax-

Milgram theorem.  The details of the Lax-Milgram theorem is reported elsewhere [5].     

 

Problem (10) is the variational problem of (4). Moreover, if W  is the solution of 

(10), then 

                                             



inea

ineah

..0

..



 u

 
i.e., ω is a weak solution of (4).    
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4. Discontinuous Galerkin Method  

 

The first discontinuous Galerkin method for hyperbolic partial differential equations 

have been introduced in 1973 by Reed and Hill to simulate nutron transport problem. 

The analysis of abstract form for this discrete problem was done one year later by 

Lesaint and Raviart [4]. More recently, the discontinuous Galerkin method for 

hyperbolic equations had a significant development based on numerical fluxes [7]. 

Discontinuous Galerkin method can be viewed as finite element method [8] with 

relaxed continuity at interelement boundaries. The essential idea of the method is 

derived from the fact that the shape functions can be chosen so that the field variable 

and/or its derivatives are discontinuous across the element boundaries [9]. The effect 

of the boundary conditions are gradually propagate through element-by-element 

connection. In this way it is possible to introduce a centering in a scheme that contains 

the integral over the edges, using the right and left values of the edge side, along the 

direction of flow. 

 

4.1. Discrete transport problem  

 

The details of this method can be found in literature [2-4]. We consider Ω a polyhedra, 

because in this way we can cover exactly a mesh of polyhedral elements.  

Let  
0hh be a family of non-degenerate, regular triangulation of Ω. An edge F of   is 

a mesh face. Let i

hF  be the set of interfaces and b

hF  be the set of boundary faces, and 

we set  
b

h

i

hh FFF   
For all i

hFF  and i.e. Fx , the average and jump of a scalar function is defined, 

respectively, as  

                        2

)()(
)(}{ 21 || xvxv

xv
KK

F




 , 
)()()(][

21 || xvxvxv KKF 
 

 where 2,1, iK i
 are the distinct mesh elements such that 

21 KKF   

 

4.2. Approach  problem   

 

In the framework of the transport problem, I denote by S1 the subspace of )(2 L   

whose functions are piecewise linear polynomial functions over 
h   with degree less or 

equal to 1. 

If the exact solution ω is regular, we hope that the approach solution will be regular 

also.  In this sense, we added to the classical formulation a priori small term 

                                    




K

hhKK v][)
2

1
(  nunu

   
expressing the discontinuities of the solution approach to interfaces of elements.  

So the approach formulation of the advective-reaction problem is defined as: 
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 find 
hhh gS   :1

  on   such that  

              














 





onvSvhvv

vv

hh

K

hhhK

K

hhKK

K K

hhh

h

0:,

][)
2

1
()(

1




nu

nunuu

                                    (11) 

 

where gh is an approach of g on  , 
Kn  is the unit outward normal to K and 

  

denotes the characteristic function of  . 

The parameter α can vary from face to face but the value α = ½ is used usually 

according to the literature. With this value, one obtains the DG method analyzed by 

Lesaint and Raviart [9]. In this case the term ][)
2

1
( hKK  nunu   is non zero 

only that part of the boundary K where 0 Knu . 

 

5. Numerical Results and Discussions  

 

In this section, we are interested in the implementation of the iterative method based 

on the application of a fixed point algorithm in FreeFem+ to solve the transport 

equation. We develop our own script in FreeFem++ to obtain the numerical solution of 

the non-dimensional steady tensorial transport equation using  discontinuous 

( ) finite element. For this type of elements, due to interpolation problem, 

FreeFem++ doesn't consider the degree of freedom as the vertices but three vertices 

move inside on the element with the linear map T(X) = G + 0.99(X - G) where G is the 

barycenter. In this way, the number of degree of freedom is 3 times of the number of 

elements.  

We consider the following non-dimensional steady tensorial transport problem 

defined in squared domain Ω = [0,1]
2
:  

  find )(2 Lσ  such that 

 

              ])()[()(2])[( tWeWe uσσuuDσuσ    in Ω                          (12) 

 

where We is a dimensionless number known as Weissenberg number and 

])([
2

1
)( t

uuuD   is the symmetric part of the velocity gradient. Small values of 

We means that the fluid is little elastic.   
We suppose that the vector field u is given by [10]  

    ))12()()(),12()()((),( 222222  xyyxxyyyxxyxu                          (13) 

Using the discrete formulation, the dimensionless transport problem can be written in 

terms of its components as a system of three scalar transport equations (advection-

reaction equations) of three stress tensor components σ11, σ12, and σ22. ( σ is symmetric 

(σ12 = σ21)), i.e., the dimensionless transport problem is, find  (σ11, σ12, σ22) such that 
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I use a fixed point iterative method where we obtain the component of 1n by the 

value of the previous iteration n . This iterative method can be described as follows: 

given ),,( 0

22

0

12

0

11   such that 
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For the computational implementation, we consider a mesh 100 x 100 with 20000 

elements and 60000  nodes which is shown in Fig. 1 take 5.0,1.0 and 0.9.  

           

 
 

Fig. 1. Meshes over the square [0,1]2.  
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For each λ, I do the study for different values of Weissenberg number We 

admissible for convergence of iterative method. 

The linear system was solved using the default solver sparse-solver [1] and the 

details are available in literature [11].  

The numerical solutions are illustrated both graphically and computationally (with 

color scales) in Figs. 2-10 for different Weissenberg number We and λ. All the color 

scales are defined for 20 values equally spaced between its minimum (below) and the 

maximum (top). 

 

 
Fig. 2. Contours of the stress tensor components at  We = 1  and λ = 0.1.  

 

 
 
Fig. 3. Contours of the stress tensor components at We = 5 and λ = 0.1. 

 

 
 

Fig. 4. Contours of the stress tensor components at We = 10 and λ = 0.1.  
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Fig. 5. Contours of the stress tensor components at We = 1 and λ = 0.5.    

 

 
 

Fig. 6. Contours of the stress tensor components at We = 5 and λ = 0.5.    

 

 

 
 

Fig. 7. Contours of the stress tensor components at We = 10 and λ = 0.5.     

 

 
 

Fig. 8. Contours of the stress tensor components at We = 1 and λ = 0.9.  
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Fig. 9. Contours of the stress tensor components at We = 5 and λ = 0.9.  

 

 
 

Fig. 10. Contours of the stress tensor components at We = 10 and λ = 0.9.  

 

I analyze the effects of Weissenberg number We. I compared the different solutions 

obtained for We between 1 and 10 with fixed λ. For each λ, I observed the occurrence 

of numerical instabilities associated with the increased We as we can see in the above 

Figures. When λ increase, I observed that the qualitative behavior is same but 

quantitatively the amplitude of each component increases. 

                         

6. Conclusion 

 

In this paper I have obtained the approximate solutions of steady tensorial transport 

equations using discontinuous Galerkin finite element method with an iterative fixed 

point algorithm implemented in FreeFem++. In fact, for known velocity, I have 

obtained the viscoelastic extra stress tensor which is caused for the elastic behavior of 

fluid particles in the fluid motion satisfying the transport equations. The numerical 

results are obtained by considering the benchmark problem over a domain of unit 

square. I have represented the solutions both graphically and computationally, and also 

have observed the behavior of the solutions of the results.  I have obtained the 

behavior of the three stress tensor components for different Weissenberg number We 

and λ. I observed that when we increase We for same λ, some perturbations are 

appeared. These perturbations are the numerical perturbations related with the high 

value of We. Taking different λ, I have observed the same behavior when the We was 

increased. Comparing these behaviors with the previous behaviors, I obtained, more or 
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less, the same qualitative behaviors. But the quantitative behaviors increase. The 

maximum value increases and the minimum value decreases, and the rate of 

perturbation is becoming greater. This is, in fact, the elastic behavior of the fluid for 

high We which coincides with the known phenomena that the high We lead a 

numerical instabilities which can be seen in the behavior of numerical solutions or lead 

the divergence of algorithm. For further work, we can try to solve the transport 

problem for bigger Weissenberg number to find the viscoelastic extra stress tensor. 

Finally, it has been established that FreeFem++ is capable of providing the better 

numerical approximations of the viscoelastic extra stress tensor by solving hyperbolic 

transport equations. 
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